scholarly journals Induction of water stress tolerance of mustard plants using Trichoderma as biological seed treatment

2014 ◽  
Vol 6 (2) ◽  
pp. 436-441
Author(s):  
K. K. Sharma ◽  
U. S. Singh

Water scarcity is one of the main consequences of changing climate which adversely affects the plant growth and productivity. Enhanced root development results in increased surface area of active absorption for water and nutrient uptake which helps in tolerating abiotic stresses including drought in plants. Trichoderma is well known for its biocontrol and growth promontory effect in plants in addition to alleviate abiotic stress. In our study, thirty isolates of Trichoderma were grown on sterilized cow dung at different moisture content ranges from 5 to 30 percent to investigate their ability to grow and multiply under water stress condition. Mustard plants were grown under glass house condition by treating seeds with selected isolates of Trichoderma subjected to water stress subsequently. All isolates of Trichoderma grew upto 20% moisture whereas only eleven isolates exhibited growth at 10% moisture. Isolate PB23 was only isolate which was able to grow and resulted in 1.0 x109 cfu/g air dried cow dung even at 5% moisture content and induced the tolerance of mustard plants under water stress conditions when applied as seed treatment before sowing.

1970 ◽  
pp. 10-15
Author(s):  
ARUNKUMAR K

Aim of this study to screened the root morphology and root characters of different cocoa types at 100 and 50 percent field capacity under water deficit condition at seedling stage. A survey was conducted at Idukki region of Kerala and twenty seven plus trees were identified. These twenty seven plus trees were screened for water stress tolerance under glasshouse condition by gravimetric method. With respect to the performance of plus trees, root length under 50% field capacity got increased to 21.15 cm as against 20.51 cm in 100 per cent field capacity. Fresh root weight and dry root weight substantially got increased under water stress. The average root girth of 27 plus trees got increased in stressed condition from 3.70 cm to 3.88 cm. The root volume also followed the same trend (47.28 as against 45.96). The percent of nitrogen is 1.37 in 50 per cent field capacity as against 1.63 in 100 per cent field capacity. The percentage of phosphorous decreased to 0.16 under 50 per cent field capacity as against 0.37 in 100 per cent field capacity. Similarly the percentage of potassium also showed a decreasing trend (1.27 % under 100 % field capacity to 1.06 % under 50 % field capacity). In the present investigation, under water stress condition the root length, number of roots, fresh weight of root and dry weight of root tends to increase compared to the 100 per cent field capacity, indicating the morphological adaptations of roots to survive under water stress condition. Furthermore, under water stress condition, root nutrients tend to get depleted.


Author(s):  
Hema Bisht ◽  
M. K. Bhatnagar ◽  
Prakhar Bhatnagar

Present work was aimed at studying the variation of non polar metabolites content in Gossypium hirsutum L. under water stress condition using a gas chromatography-mass spectrometry (GC-MS) technique. A total of 17 non-polar metabolites were detected in control and water stressed G. hirsutum leaf. The major metabolites were quinoline derivative (26.37±0.29%), 2- methylhexadecan-1-ol (7.47±0.07%), phytol (7.71±0.02%), myristic acid (5.94±0.04%), hexadecanol (14.30±0.94%), nonadecane (1.67±0.05%) and palmitic acid (3.20±1.39%). Fourteen metabolites were detected in control and water stressed G. hirsutum stem. The major metabolites were dodecene (1.67±0.11%), L-lysine (0.65±0.06%), dibutylphthalate (5.06±1.88%), linoleic acid (10.26±0.07%), campesterol (0.87±0.04%) and stigmasterol (1.13±0.55%). Statistical analysis of GC-MS data was carried out by Mann-Whitney U test without normal distribution using statistical software SYSTAT version 12.0. Significant variation in the content of the most of the metabolites were observed between control and water stressed leaf or stem (Mann-Whitney U test, P =0.05). It concludes that the major metabolites played an important role during water stress and can be consider as metabolites responsible for water stress tolerance in G. hirsutum.


Agro-Science ◽  
2015 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
S Ovie ◽  
GU Nnaji ◽  
PO Oviasogie ◽  
PE Osayande ◽  
P Irhemu

2013 ◽  
Vol 31 (2) ◽  
pp. 291-302 ◽  
Author(s):  
F.B. Cerqueira ◽  
E.A.L. Erasmo ◽  
J.I.C. Silva ◽  
T.V. Nunes ◽  
G.P. Carvalho ◽  
...  

The objective of this study was to evaluate the competitiveness of two cultivars of upland rice drought-tolerant, cultured in coexistence with weed S. verticillata, under conditions of absence and presence of water stress. The experiment was conducted in a greenhouse at the Experimental Station of the Universidade Federal de Tocantins, Gurupi-TO Campus. The experimental design was completely randomized in a factorial 2 x 2 x 4 with four replications. The treatments consisted of two rice cultivars under two water conditions and four densities. At 57 days after emergence, were evaluated in rice cultivars and weed S. verticillata leaf area, dry weight of roots and shoots and total concentration and depth of roots. Was also evaluated in rice cultivars, plant height and number of tillers. Water stress caused a reduction in leaf area, the concentration of roots and vegetative components of dry matter (APDM, and MSR MST) of rice cultivars and Jatoba Catetão and weed S. verticillata. The competition established by the presence of the weed provided reduction of all vegetative components (MSPA, and MSR MST) of cultivars and Jatoba Catetão. It also decreased the number of tillers, the concentration of roots and leaf area. At the highest level of weed competition with rice cultivars, a greater decrease in vegetative components and leaf area of culture, regardless of water conditions.


2019 ◽  
Vol 11 (14) ◽  
pp. 1684 ◽  
Author(s):  
Chao Zhang ◽  
Jiangui Liu ◽  
Taifeng Dong ◽  
Elizabeth Pattey ◽  
Jiali Shang ◽  
...  

Accurate information of crop growth conditions and water status can improve irrigation management. The objective of this study was to evaluate the performance of SAFYE (simple algorithm for yield and evapotranspiration estimation) crop model for simulating winter wheat growth and estimating water demand by assimilating leaf are index (LAI) derived from canopy reflectance measurements. A refined water stress function was used to account for high crop water stress. An experiment with nine irrigation scenarios corresponding to different levels of water supply was conducted over two consecutive winter wheat growing seasons (2013–2014 and 2014–2015). The calibration of four model parameters was based on the global optimization algorithms SCE-UA. Results showed that the estimated and retrieved LAI were in good agreement in most cases, with a minimum and maximum RMSE of 0.173 and 0.736, respectively. Good performance for accumulated biomass estimation was achieved under a moderate water stress condition while an underestimation occurred under a severe water stress condition. Grain yields were also well estimated for both years (R2 = 0.83; RMSE = 0.48 t∙ha−1; MRE = 8.4%). The dynamics of simulated soil moisture in the top 20 cm layer was consistent with field observations for all scenarios; whereas, a general underestimation was observed for total water storage in the 1 m layer, leading to an overestimation of the actual evapotranspiration. This research provides a scheme for estimating crop growth properties, grain yield and actual evapotranspiration by coupling crop model with remote sensing data.


Sign in / Sign up

Export Citation Format

Share Document