scholarly journals Using Ultrasonic Pulse Velocity Test to Assess the Effect of Water-Cement Ratio on the Compressive Strength of Concrete

2019 ◽  
Vol 25 (5) ◽  
pp. 79-86 ◽  
Author(s):  
Ziwar Zebari

This study aims to find the effect of water-cement ratio on the compressive strength of concrete by using ultrasonic pulse velocity test (UPVT). Over 230 standard cube specimens were used in this study, with dimensions of 150mm, and concrete cubes were cured in water at 20 °C. Also, the specimens used in the study were made of concrete with varied water-cement ratio contents from 0.48 to 0.59. The specimens were taken from Diyarbakir-Turkey concrete centers and tested at the structure and material science lab, civil engineering, faculty of engineering from Dicle University.  The UPV measurement and compressive strength tests were carried out at the concrete age of 28 days. Their UPV and compressive strength ranged between (3.89-4.66km/s) and (17.74-40.56MPa) respectively. The experimental results showed that although the UPV and the compressive strength of concrete are related, also, the UPV and compressive strength have a relation with the rate of the water-cement ratio of concrete.  

2018 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Belaribi Hassiba ◽  
Mellas Mekki ◽  
Rahmani Fraid

The paper analyses the effects of high temperatures on the concrete residual strength using ultrasonic velocity (UPV). An experimental investigation was conducted to study the relationship between UPV residual data and compressive strength of concrete with different mixture proportions, cubic specimens with water-cement ratio of 0.35. They were heated in an electric furnace at temperatures ranging from 200°C to 600°C. In this experiment a comparison was made between the four groups which include two types of fibers steel 0,19%, 0,25% and 0,5%, polypropylene: 0,05%, 0,11% 0,16 % by volume. Cube specimens were tested in order to determine ultrasonic velocity. The compressive strength was tested too. According to the results, relations were established between ultrasonic velocity in the specimens and the compressive strength at different temperature and the range of the velocity of the waves were also determined for this kind of concrete. Result of the test showed that UPV test can be successfully used in order to verify the consistency of structures damaged by fire.


2016 ◽  
Vol 9 (3) ◽  
pp. 395-402 ◽  
Author(s):  
M. A. P. Irrigaray ◽  
R. C. de A. Pinto ◽  
I. J. Padaratz

ABSTRACT Although the ultrasonic pulse velocity (UPV) method has been extensively used to estimate concrete compressive strength, the relationship between UPV and concrete strength is mixture dependent. As a result, the applicability of this method to estimate strength is well known to be limited. Aggregate type, cement type, mixture proportions, and water-cement ratio influence such a relationship. Nevertheless, UPV and strength are both governed by cement hydration, and thus, a relationship between UPV in the cement paste phase and concrete compressive strength would be expected to exist. By not taking into account the type and volume content of aggregates, this relationship could be the same for concrete mixtures with same type of cement and water-cement ratio, regardless the aggregate type used. This study investigates the existence of such a relationship. Concrete mixtures with water-cement ratios of 0.48, 0.55 and 0.64, with different paste volumes were prepared in the laboratory. For each mixture, compressive strength and ultrasonic pulse velocity were evaluated at various ages. The UPV of each concrete phase: paste, fine aggregate, and coarse aggregate, was obtained through paste and mortar specimens. This study indicated that it is possible to establish a unique relationship between the UPV in cement paste phase and the concrete compressive strength. This unique relationship could be applied to several concrete mixtures, greatly expanding the use of the UPV method to estimate compressive strength.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
B. Ravali ◽  
K. Bala Gopi Krishna ◽  
D. Ravi Kanth ◽  
K. J. Brahma Chari ◽  
S. Venkatesa Prabhu ◽  
...  

Need of construction is increasing due to increase in population growth rate. The geopolymer concrete is eco-friendly than ordinary concrete. Current experimental investigation was conducted on ordinary and geopolymer concrete using nondestructive testing (NDT) tests like ultrasonic pulse velocity (UPV) test and rebound hammer (RH) test. Cube specimens of dimensions 150 mm × 150 mm × 150 mm are used to conduct these tests at 7, 14, and 28 days. Proportions considered for concrete are cement-fly ash-river sand (100-0-100% and 60-40-100%), cement-fly ash-robo sand (100-0-100% and 60-40-100%) whereas geopolymer concrete fly ash-metakaolin is taken in proportions of 100-0%, 60-40%, and 50-50%. Alkaline activators (sodium hydroxide and sodium silicate with molarity 12M) were used in preparing geopolymer concrete. The major objective of the current study is to obtain relation between compressive strength of concrete and UPV values.


2010 ◽  
Vol 163-167 ◽  
pp. 1532-1539 ◽  
Author(s):  
Chung Ming Ho ◽  
Wei Tsung Tsai

The objectives of this paper are to find the strength and ultrasonic pulse velocity (UPV) of concrete adding admixtures by glass fiber and nano-clay. Residual strength and residual UPV of concrete specimens subjected to elevated temperatures are investigated. Experiment results showed that adding glass fiber and nano-clay would be beneficial for the later-age compressive strength of concrete. Adding nano-clay could considerably increase the flexural and split strength and the toughness of concrete. It is revealed that adding nano-clay could significantly maintain residual compressive and split strength of specimens after high temperature exposure. Regression analysis results revealed that the residual strength and residual UPV of concrete specimens had a high relevance after elevated temperatures exposure.


Sign in / Sign up

Export Citation Format

Share Document