scholarly journals Drag Reduction Using Passive Methods on KIA PRIDE Car Model

2020 ◽  
Vol 26 (4) ◽  
pp. 47-63
Author(s):  
Zahraa Mahdi Saleh ◽  
Anmar Hamid Ali ◽  
Mustafa Sabeeh Abood

An experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the average drag estimated on the baseline car for different Reynolds numbers was (0.381) and the drag force was reduced by adding a spoiler and a slice diffuser to (4.45%, 1.5%) respectively, whereas the amount of drag reduction was (5.46%) when all drag reduction modifications were added together on the base car. No effect was noticed as vortex generators when added separately. The deviation in the drag coefficient from the real car testing was about (6.2%) and shows a very good agreements between the real car test and that of the wind tunnel test.

Aerodynamic drag has been experimentally estimated for scale models of a passenger car and a commercial truck in a wind tunnel. Polished surface has resulted up to 15 % reduction in drag force and add-on has resulted in 57% increase in drag force of a car model whereas 2.6 % reduction in drag force has resulted by using deflector in a commercial truck model. Anova analysis shows variation in mean of group data.


2020 ◽  
Vol 198 ◽  
pp. 104398 ◽  
Author(s):  
Yunchao Yang ◽  
William Bradford Bartow ◽  
Gecheng Zha ◽  
Heyong Xu ◽  
Jianlei Wang

2014 ◽  
Vol 553 ◽  
pp. 211-216
Author(s):  
Asiful Islam ◽  
Graham Doig

For automotive applications, passive flow control devices can be used to reduce, delay or prevent flow separation. This study explores the nature of vortex generation and behaviour, numerically and experimentally, for a simple geometry at a Reynolds Number (Rex) of 5×105 and 1.945×106. The setup comprised a triangular vane vortex-generator mounted on a shallow ramp referenced from literature. Flow over the isolated ramp was validated with past experimental particle-image-velocimetry (PIV) data, which also highlighted the relative performance of various turbulence models. A parametric study was undertaken with the vane orientation defined by an angle-of-attack (β) and stream-wise location (xedge/xVG). These results revealed relationships between geometric parameters of the vortex generator, as well as the influence of the boundary layer thickness (hVG/δ), on the spatial trajectory of induced vortices.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 664 ◽  
Author(s):  
Mitsugu Hasegawa ◽  
Hirotaka Sakaue

A microfiber coating having a hair-like structure is investigated as a passive flow control device of a bluff body. The effect of microfiber length is experimentally studied to understand the impact of the coating on drag on a cylinder. A series of microfiber coatings with different lengths are fabricated using flocking technology and applied to various locations over the cylinder surface under the constant Reynolds number of 6.1 × 104 based on the diameter of the cylinder. It is found that the length and the location both play important roles in the drag reduction. Two types of drag reduction can be seen: (1) when the relative length of the microfiber, k/D, is less than 1.8%, and the coating is applied before flow separates over the cylinder; and (2) k/D is over 3.3%, and the coating is applied after the flow separation location on the cylinder. The maximum drag reduction for the former type is 59% compared to that from the cylinder without the microfiber coating. For the latter type, the maximum drag reduction is 27%.


2016 ◽  
Vol 78 (5) ◽  
Author(s):  
Made Suangga ◽  
Yanti Yanti ◽  
Irpan Hidayat

A bridge structure should have a resistance to wind loads. The purpose of research is determine the coefficient of static wind load using computational calculations with FLUENT. The objects were modeled into a square 1x1 m, rectangle 2x1 m and circle diameter of 1 m with velocity of wind 10 m/s, 20 m/s and 30 m/s. The results described the value of the coefficient of drag force (CD) for square shape larger than rectangle. The coefficient of drag force (CD) for rectangular shape larger than circle. The value of coefficient of static wind do not depend on dimensional and wind speed. The coefficient value of wind static for Suramadu bridge which calculated by FLUENT Program and wind tunnel test have a similar chart patterns.


2015 ◽  
Vol 765 ◽  
pp. 353-395 ◽  
Author(s):  
Daniel Floryan ◽  
J. M. Floryan

AbstractIt is known that the drag for flows driven by a pressure gradient in heated channels can be reduced below the level found in isothermal channels. This reduction occurs for spatially modulated heating and is associated with the formation of separation bubbles which isolate the main stream from direct contact with the solid wall. It is demonstrated that the use of a proper combination of spatially distributed and spatially uniform heating components results in an increase in the horizontal and vertical temperature gradients which lead to an intensification of convection which, in turn, significantly increases the drag reduction. An excessive increase of the uniform heating leads to breakup of the bubbles and the formation of complex secondary states, resulting in a deterioration of the system performance. This performance may, under certain conditions, still be better than that achieved using only spatially distributed heating. Detailed calculations have been carried out for the Prandtl number $\mathit{Pr}=0.71$ and demonstrate that this technique is effective for flows with a Reynolds number $\mathit{Re}<10$; faster flows wash away separation bubbles. The question of net gain remains to be settled as it depends on the method used to achieve the desired wall temperature and on the cost of the required energy. The presented results provide a basis for the design of passive flow control techniques utilizing heating patterns as controlling agents.


2012 ◽  
Vol 25 ◽  
pp. 01078
Author(s):  
Lukas Popelka ◽  
Jana Kuklova ◽  
David Simurda ◽  
Natalie Souckova ◽  
Milan Matejka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document