Transformations of pollutants in the river water-pore solution-solid phase of the bottom sediments system in small rivers (using the example of waterways in the Losinyi Ostrov (Elk Island) National Park)

2008 ◽  
Vol 63 (2) ◽  
pp. 95-107
Author(s):  
O. V. Sokolova ◽  
D. V. Grichuk ◽  
T. V. Shestakova ◽  
K. A. Pestova
2021 ◽  
Vol 958 (1) ◽  
pp. 012017
Author(s):  
D Zhou ◽  
O G Savichev

Abstract Considering the dilution of sewage and the interaction between river water and bottom sediments, a mathematical model for the conversion of pollutants in water bodies has been developed. Taking the small rivers in northern Vietnam (Ban Thi River and Dai River in the Red River Basin) as an example, it shows that more than 60% of the chemical composition of the river waters studied is determined by the interaction of the following factors: Co-precipitation of sediments and trace elements on solid particles, and sediments at the bottom of the river. The impact of water runoff is first manifested in the change of solid runoff, and to a lesser extent in the process of regulating the water, which takes longer to establish equilibrium in the solution. On the basis of the proposed model, a simplified version of the model and a standardized pollutant discharge method have been developed for whether there is an option of river water chemical composition observation data. In this case, the influence of interaction with bottom sediments is indirectly considered through the structure of the model and its parameter values. The simplified model was tested with the Jinjiang River in the Poyang Lake Basin as an example.


Author(s):  
Boris Korzhenevskiy ◽  
Gleb Tolkachev ◽  
Nikolay Kolomiycev

The main criteria for assessing the content of heavy metals in sediments of water bodies. At present, the methodology for rationing pollutants in bottom sediments of surface watercourses is clearly not sufficiently developed. There are various and significantly different approaches to the assessment of soil contamination with heavy metals. The maximum permissible concentration (MAC), which is the main criterion for assessing the levels of pollution, is not perfect and needs to be significantly adjusted. A number of methodological assessments of contamination of bottom sediments with heavy metals with comparative characteristics are considered, of which a method for estimating the anthropogenic load on a reservoir according to its geo-classes has been proposed as one of the best. The gross content of heavy metals in bottom sediments of water bodies does not give a sufficient idea of the possibility of secondary pollution of water masses and, as a result, subsequent toxic effects. A much more important indicator is their content and distribution by forms of existence in the solid phase and pore solution of bottom sediments. As a consequence, this article develops a topic for estimating possible secondary pollution of water bodies by determining the content and distribution of TM by forms of existence in the solid phase and pore sediment solution.


Author(s):  
Ngo The Cuong ◽  
Tran Hoan Quoc ◽  
Svetlana Vasilievna Zolotokopova

The article focuses on the study of change of containing heavy metals (zinc, copper, iron, cadmium, lead, arsenic) in the abiotic and biotic components of the Serepok river (Vietman) influenced by wastewater discharge from industrial areas. Heavy metal content was determined in the river water and bottom sediments in the four zones: above and within the boundaries of industrial regions Xoa Phu and Tam Thang and in two water reservoirs situated below the boundaries of those industrial areas. Tilapia Galilean ( Sarotherodon galilaeus ), Hemibagrus ( Hemibagrus ), and sazan ( Cyprinus carpio ) caught in these areas were the hydrobionts under study in which liver, gills, skeleton and muscles accumulation of heavy metals was detected. In the organs of fish caught in the river within industrial region, heavy metals concentration was 3-7 times higher. The greatest concentration of heavy metals was found in the liver and gills of fish caught in the boundaries of industrial regions, the least concentration was in the muscles. In most cases, significant correlation between heavy metal concentration in organs of fishes and in river water, bottom sediments has been revealed.


1990 ◽  
Vol 22 (5) ◽  
pp. 203-210 ◽  
Author(s):  
D. Rank ◽  
F. J. Maringer ◽  
W. Papesch ◽  
V. Rajner

Water, sediment, and fish samples were collected during the Danube excursion 1988, within a coordinated sampling program of the Radiology Working Group of the “Internationale Arbeitsgemeinschaft Donauforschung ” (K.Hübel, Munich; I. Kurcz, Budapest; D.Rank, Vienna). The H-3 content of the river water and the radioactivity of the bottom sediments were measured at the BVFA Arsenal, Vienna. The determined H-3 content of the Danube water corresponds with the long-term trend in the H-3 content of the hydrosphere; the values lie in the range of 3 Bq/kg downstream from Belgrade, upstream from Belgrade they are about 4 Bq/kg. It was only in the waste water plume of the nuclear power station of Kozloduj that a slightly elevated H-3 value - 6 Bq/kg - was determined. The content of the sediments of artificial radionuclides was found, at the time of the Danube field excursion, to be almost exclusively due to the radioactive material released following the reactor accident at Chernobyl in April 1986 (mainly Cs-137 and Cs-134). As a consequence of the air currents and precipitation conditions prevailing at the time of the accident, the bottom sediments in the lower course of the Danube were less contaminated than those in the upper course. The fine sediments were found to contain over 3000 Bq/kg of Cs-137 in the upper course of the Danube.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1571-1587 ◽  
Author(s):  
Karel Čížek ◽  
Jiří Barek ◽  
Jiří Zima

The polarographic behavior of 3-nitrofluoranthene was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a dropping mercury electrode, differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV), both at a hanging mercury drop electrode. Optimum conditions have been found for its determination by the given methods in the concentration ranges of 1 × 10-6-1 × 10-4 mol l-1 (DCTP), 1 × 10-7-1 × 10-4 mol l-1 (DPP), 1 × 10-8-1 × 10-6 mol l-1 (DPV) and 1 × 10-9-1 × 10-7 mol l-1 (AdSV), respectively. Practical applicability of these techniques was demonstrated on the determination of 3-nitrofluoranthene in drinking and river water after its preliminary separation and preconcentration using liquid-liquid and solid phase extraction with the limits of determination 4 × 10-10 mol l-1 (drinking water) and 2 × 10-9 mol l-1 (river water).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariusz Sojka ◽  
Adam Choiński ◽  
Mariusz Ptak ◽  
Marcin Siepak

AbstractThe objective of this study was to analyse spatial variability of the trace elements (TEs) and rare earth elements (REEs) concentration in lake bottom sediments in Bory Tucholskie National Park (BTNP); Poland. The following research questions were posed: which factors have a fundamental impact on the concentration and spatial variability of elements in bottom sediments, which of the elements can be considered as indicators of natural processes and which are related to anthropogenic sources. The research material was sediments samples collected from 19 lakes. The concentrations of 24 TEs and 14 REEs were determined. The analyses were carried out using the inductively coupled plasma mass spectrometry (ICP-QQQ). Cluster analysis and principal component analysis were used to determine the spatial variability of the TEs and REEs concentrations, indicate the elements that are the indicators of natural processes and identify potential anthropogenic sources of pollution. The geochemical background value (GBV) calculations were made using 13 different statistical methods. However, the contamination of bottom sediments was evaluated by means of the index of geo-accumulation, the enrichment factor, the pollution load index, and the metal pollution index. The BTNP area is unique because of its isolation from the inflow of pollutants from anthropogenic sources and a very stable land use structure over the last 200 years. This study shows high variability of TE and REE concentrations in lake sediments. The values of geochemical indices suggest low pollution of lakes bottom sediments. It was found that TEs originated mainly from geogenic sources. However, the concentrations of Li, Ni, Sc, Se, Be, Se, Ag, Re, Tl, Cd, Sb and U may be related to the impact of point sources found mainly in the Ostrowite Lake. Almost all REEs concentrations were strongly correlated and their presence was linked to with geochemical processes. The elements allowing to identify natural processes and anthropogenic pollution sources were Cr, Co, Cu, Ag, Cd, Zn, Bi, Re, Ba, Al and Rb in TEs group and Nd, Gd, Yb, Lu, Eu, Dy and Ce in REEs group. The analysis shows high spatial variability of TE and REE concentrations in lake sediments. The values of geochemical indices point to low pollution of lakes sediments. The anthropogenic sources only for two lakes had an impact on concentrations of selected TEs and REEs. The analyses allowed to identify elements among TEs and REEs documenting geochemical processes and those indicating anthropogenic sources of pollution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Żaneta Kaszta ◽  
Samuel A. Cushman ◽  
Rob Slotow

Effective conservation and land management require robust understanding of how landscape features spatially and temporally affect population distribution, abundance and connectivity. This is especially important for keystone species known to shape ecosystems, such as the African elephant (Loxodonta africana). This work investigates monthly patterns of elephant movement and connectivity in Kruger National Park (KNP; South Africa), and their temporal relationship with landscape features over a 12-month period associated with the occurrence of a severe drought. Based on elephant locations from GPS collars with a short acquisition interval, we explored the monthly patterns of spatial-autocorrelation of elephant movement using Mantel correlograms, and we developed scale-optimized monthly path-selection movement and resistant kernel connectivity models. Our results showed high variability in patterns of autocorrelation in elephant movements across individuals and months, with a preponderance of directional movement, which we believe is related to drought induced range shifts. We also found high non-stationarity of monthly movement and connectivity models; most models exhibited qualitative similarity in the general nature of the predicted ecological relationships, but large quantitative differences in predicted landscape resistance and connectivity across the year. This suggests high variation in space-utilization and temporal shifts of core habitat areas for elephants in KNP. Even during extreme drought, rainfall itself was not a strong driver of elephant movement; elephant movements, instead, were strongly driven by selection for green vegetation and areas near waterholes and small rivers. Our findings highlight a potentially serious problem in using movement models from a particular temporal snapshot to infer general landscape effects on movement. Conservation and management strategies focusing only on certain areas identified by temporarily idiosyncratic models might not be appropriate or efficient as a guide for allocating scarce resources for management or for understanding general ecological relationships.


Sign in / Sign up

Export Citation Format

Share Document