field excursion
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Kiwoon Choi ◽  
Sang Hui Im ◽  
Chang Sub Shin

The axion is a light pseudoscalar particle postulated to solve issues with the Standard Model, including the strong CP problem and the origin of dark matter. In recent years, there has been remarkable progress in the physics of axions in several directions. An unusual type of axion-like particle termed the relaxion was proposed as a new solution to the weak scale hierarchy problem. There are also new ideas for laboratory, astrophysical, or cosmological searches for axions; such searches can probe a wide range of model parameters that were previously inaccessible. On the formal theory side, the weak gravity conjecture indicates a tension between quantum gravity and a trans-Planckian axion field excursion. Many of these developments involve axions with hierarchical couplings. In this article, we review recent progress in axion physics, with particular attention paid to hierarchies between axion couplings. We emphasize that the parameter regions of hierarchical axion couplings are the most accessible experimentally. Moreover, such regions are often where important theoretical questions in the field are addressed, and they can result from simple model-building mechanisms. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Thomas W. Grimm ◽  
Chongchuo Li

Abstract We study the backreaction effect of a large axion field excursion on the saxion partner residing in the same $$ \mathcal{N} $$ N = 1 multiplet. Such configurations are relevant in attempts to realize axion monodromy inflation in string compactifications. We work in the complex structure moduli sector of Calabi-Yau fourfold compactifications of F-theory with four-form fluxes, which covers many of the known Type II orientifold flux compactifications. Noting that axions can only arise near the boundary of the moduli space, the powerful results of asymptotic Hodge theory provide an ideal set of tools to draw general conclusions without the need to focus on specific geometric examples. We find that the boundary structure engraves a remarkable pattern in all possible scalar potentials generated by background fluxes. By studying the Newton polygons of the extremization conditions of all allowed scalar potentials and realizing the backreaction effects as Puiseux expansions, we find that this pattern forces a universal backreaction behavior of the large axion field on its saxion partner.


Author(s):  
M.J. Orgeira ◽  
L.A. Beraza ◽  
H. Vizan ◽  
J.F. A. Velas ◽  
M.L. Bobbio

2019 ◽  
Vol 34 (28) ◽  
pp. 1950164 ◽  
Author(s):  
Maxim Emelin ◽  
Radu Tatar

We study the interplay among extrema of axion potentials, Kahler moduli stabilization and the swampland criteria. We argue that moving away from the minima of nonperturbatively generated axion potentials can lead to a runaway behavior of moduli that govern the couplings in the effective field theory. The proper inclusion of these degrees of freedom resolves the conflict between periodic axion potentials and the gradient de Sitter criterion, without the need to invoke the refined de Sitter criterion. We investigate the possibility of including this runaway direction as a model of quintessence that satisfies the swampland criteria. Using a single nonperturbative effect, the maximum along the axion direction provides such a runaway direction, which is unstable in the axion directions, sensitive to initial conditions and too steep to allow for a Hubble time of expansion without violating the field excursion criterion. Adding a second nonperturbative effect generates a saddle point in the potential satisfying the refined de Sitter criterion, which solves the steepness problem and improves the initial conditions problem although some fine-tuning remains required.


Author(s):  
Alberto Salvio

Abstract Extensions of the Standard Model and general relativity featuring a UV fixed point can leave observable implications at accessible energies. Although mass parameters such as the Planck scale can appear through dimensional transmutation, all fundamental dimension-4 operators can (at least approximately) respect Weyl invariance at finite energy. An example is the Weyl-squared term, whose consistency and observational consequences are studied. This quasi-conformal scenario emerges from the UV complete quadratic gravity and is a possible framework for inflation. We find two realizations. In the first one the inflaton is a fundamental scalar with a quasi-conformal non-minimal coupling to the Ricci scalar. In this case the field excursion must not exceed the Planck mass by far. An example discussed in detail is hilltop inflation. In the second realization the inflaton is a pseudo-Goldstone boson (natural inflation). In this case we show how to obtain an elegant UV completion within an asymptotically free QCD-like theory, in which the inflaton is a composite scalar due to new strong dynamics. We also show how efficient reheating can occur. Unlike the natural inflation based on Einstein gravity, the tensor-to-scalar ratio is well below the current bound set by Planck. In both realizations mentioned above, the basic inflationary formulæ  are computed analytically and, therefore, these possibilities can be used as simple benchmark models.


2019 ◽  
Vol 09 (10) ◽  
pp. 722-725
Author(s):  
Kemin Xu ◽  
Gang Li ◽  
Zhenguo Ning ◽  
Youping Wang ◽  
Jie Qin ◽  
...  

2019 ◽  
Vol 98 ◽  
pp. 07004
Author(s):  
Neil M. Burnside ◽  
Nelly Montcoudiol ◽  
Adrian J. Boyce

The University of Glasgow has a long tradition of scientific endeavour in the Gregory Rift Valley. This paper details some of the history and inspiration behind current hydrological efforts and details results from a 2016 field excursion to this region. A range of surface and ground waters were sampled and analysed for physical, chemical, and stable isotope composition as scoping investigation into geothermal-related hydrological systems. The results allow us to make some initial observations that will be followed up by additional multi-seasonal data collection. Our initial results show clear chemical and isotopic signals for river, lake, hot spring and Menengai geothermal well waters.


2018 ◽  
Vol 17 (2) ◽  
pp. ar24 ◽  
Author(s):  
Torstein Nielsen Hole

This study aimed to discern sociocultural processes through which students learn in field excursions. To achieve this aim, short-term ethnographic techniques were employed to examine how undergraduate students work and enact knowledge (or knowing) during a specific field excursion in biology. The students participated in a working practice that employed research methods and came to engage with various biological phenomena over the course of their work. A three-level analysis of the students’ experiences focused on three processes that emerged: participatory appropriation, guided participation, and apprenticeship. These processes derive from advances in practice-oriented theories of knowing. Through their work in the field, the students were able to enact science autonomously; they engaged with peers and teachers in specific ways and developed new understandings about research and epistemology founded on their experiences in the field. Further discussion about the use of “practice” and “work” as analytical concepts in science education is also included.


Sign in / Sign up

Export Citation Format

Share Document