Mechanical properties and resistance to sulfide cracking of 12X18H10T steel wire

2007 ◽  
Vol 37 (7) ◽  
pp. 645-647
Author(s):  
G. N. Gur’yanov ◽  
S. V. Smirnov ◽  
N. A. Klekovkina ◽  
S. A. Terskikh
2013 ◽  
Vol 746 ◽  
pp. 394-399
Author(s):  
Niwat Anuwongnukroh ◽  
Yosdhorn Chuankrerkkul ◽  
Surachai Dechkunakorn ◽  
Pornkiat Churnjitapirom ◽  
Theeralaksna Suddhasthira

The archwire is generally used in fixed appliances for orthodontic treatment to correct dental malocclusion. However, it is interesting to know whether general purpose stainless steel wire could replace commercial orthodontic archwire in orthodontic practice for economic reasons. The purpose of this study was to determine the bending properties of general purpose stainless steel wire compared with commercial orthodontic stainless steel wires after forming as an archwire for orthodontic use. The samples used in this study were 90 general purpose and 45 commercial (Highland) round stainless steel wires in 0.016, 0.018, and 0.020 sizes (30 general purpose and 15 commercial wires for each size). All 15 general purpose stainless steel wires with different sizes were formed into orthodontic archwire with a Universal Testing Machine. All samples were tested (three-point bending test) for mechanical properties. The results showed no significant difference between general purpose and commercial orthodontic wires in size 0.016 for 0.1 mm offset bending force, 0.2% yield strength, and springback. Although many mechanical properties of general purpose wires differed from commercial wires, their values conformed to other previous studies within the range of clinical acceptance. In conclusion, orthodontic formed general purpose round stainless steel wires had statistically different (p <0.05) mechanical properties from commercial orthodontic stainless steel wires (Highland) but the mechanical properties were acceptable to use in orthodontic treatment.


1968 ◽  
Vol 32 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Makoto Ohsawa ◽  
Yoshitoshi Hagiwara ◽  
Akira Nakagawa ◽  
Kazumasa Inoue ◽  
Atsuo Morii ◽  
...  

2012 ◽  
Vol 581-582 ◽  
pp. 842-846
Author(s):  
Jian Hua Zeng ◽  
Yi Chang Li ◽  
Zheng Zhou ◽  
Jun Chen

Effect of the laying head temperature and controlled cooling process on microstructure and mechanical properties of 72LXA wire rod were investigated.The results show that under the same cooling process,with the raising laying temperature and increasing sorbitizing rate and decreasing proeutectoid ferrite,the steel rod strength is improving,proeutectoid ferrite and sorbitizing rate are the critical impact factors on steel rod properties;indentifying cooling after perlite forming can restrain the dissolve of lamellar cementite;the mechanical properties of whole rod coil are improved by the proper rolling rate and air cooling.The high strength of 1050 MPa of steel rod was obtained,that shows the defined hot rolling process can conform to the steel rod properties requirement.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2250 ◽  
Author(s):  
Joong-Ki Hwang

The effect of changing the strain path on texture development, twin kinetics, and mechanical properties in twinning-induced plasticity steel was investigated to understand twinning behavior in more detail. Among the various plastic deformation processes, the wire drawing process was selected to achieve the aims of the study. Specimens of cold-drawn TWIP steel wire under the same effective strain but with different crystallographic textures were successfully fabricated using the effect of the wire drawing direction. Electron backscatter diffraction results showed that the drawn wires using both unidirectional (UD) and reverse-directional (RD) wire drawing processes were characterized as duplex fiber textures of major <111> and minor <100>. It was found that the RD wire had a higher fraction of <111> component at both the center and surface areas compared to the UD wire, because the metal flow of the RD wire was beneficial for the development of a <111> orientation. The pronounced <111> crystallographic orientation of the RD wire activated the twinning rate and geometrically necessary dislocation density, leading to an increase in strength but a decrease in ductility. The strain path is as important as the amount of strain for strengthening the materials, especially those that are deformed by twinning.


Sign in / Sign up

Export Citation Format

Share Document