A Way to Increase Stability of Mechanical Properties for Rings Made of Titanium Alloy VT6 of Rocket and Gas-Turbine Engines by Forming a Globular Microstructure

2019 ◽  
Vol 48 (4) ◽  
pp. 340-347 ◽  
Author(s):  
A. I. Alimov ◽  
S. A. Evsyukov ◽  
R. Yu. Sukhorukov
Author(s):  
В. Полетаев ◽  
V. Poletaev ◽  
Е. Цветков ◽  
E. Tsvetko

The investigation results of technological conditions impact at multiaxes deep grinding upon quality of titanium alloy blade surface layer in the compressors of gas turbine engines (GTE) are presented. The grinding mode impact upon a surface and a value of residual stresses in a surface layer of blades is defined and also conditions for defect occurrence as burns on blade surfaces under machining are detected.


Author(s):  
L. M. Pike ◽  
S. K. Srivastava

Ever increasing demands for lower gas turbine operating costs have led to the need for longer lasting components. This in turn, requires the availability of alloys which are reliable to such long lifetimes. In the mill produced condition, most alloys have desirable microstructures and mechanical properties. However, after exposure to the harsh temperatures found in gas turbine engines, the microstructures of most alloys will begin to change. The effects on the mechanical properties of such microstructural changes can range from mild deterioration to significant degradation. In this paper, the effects of thermal exposures at temperatures from 1200 to 1600°F for durations up to one year on the mechanical properties of three wrought gas turbine alloys will be reported. The alloys will include HAYNES® 188 alloy (Co-Ni-Cr-W), HAYNES 230® alloy (Ni-Cr-W), and HAYNES HR-120® alloy (Fe-Ni-Cr-Nb-N).


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4463-4468
Author(s):  
JONG-YUP KIM ◽  
JOON-HYUN LEE ◽  
SEUNG-HOON NAHM

Damage and integrity evaluation techniques should be developed steadily in order to ensure the reliability and the economic efficiency of gas turbine engines. Casting defects may exist in most casting components of gas turbine engines, and the defects could give serious effect on mechanical properties and fracture toughness. Therefore, it is very important to understand the effect of casting defects on the above properties in order to predict the safety and life of components. In this study, specimens with internal casting defects, made from 17-4PH stainless steel, were prepared and evaluated and characterized based on the volume fraction of defects. The relation between mechanical properties such as tensile, low cycle fatigue and fracture toughness and volume fraction of defect has been investigated. As a result of the analysis, the mechanical properties of 17-4PH decreased as the defect volume fraction increased with very good linearity. The mechanical properties also showed an inversely proportional relationship to electrical resistivity.


Author(s):  
H. A. Johnson ◽  
G. K. Bhat

At the present time, virtually all superalloys used in Soviet gas turbine engines have been electroslag remelted. The use of this process in the United States has been at a virtual standstill since its inception by Hopkins in 1935. This paper will cover recent development effort on the process and what it offers to the industry. The process itself will be described in detail. Included also will be its advantages, both in metalworking and resultant mechanical properties obtained on actual gas turbine engine components fabricated from electroslag remelted superalloys.


1997 ◽  
Vol 28 (7-8) ◽  
pp. 536-542
Author(s):  
A. A. Khalatov ◽  
I. S. Varganov

1988 ◽  
Author(s):  
James C. Birdsall ◽  
William J. Davies ◽  
Richard Dixon ◽  
Matthew J. Ivary ◽  
Gary A. Wigell

Alloy Digest ◽  
1999 ◽  
Vol 48 (7) ◽  

Abstract Haynes alloy 75 is an 80 nickel-20 chromium alloy with both good oxidation resistance and good mechanical properties at high temperatures. It is amenable to all forms of fabrication and welding. A typical application for sheet metal is fabrications in gas turbine engines. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming and heat treating. Filing Code: Ni-557. Producer or source: Haynes International Inc.


Sign in / Sign up

Export Citation Format

Share Document