To the Question of Forming Geometrically Necessary Disclinations in Triple Junctions of Grain Boundaries in Metals

2018 ◽  
Vol 82 (9) ◽  
pp. 1125-1129
Author(s):  
G. M. Poletaev ◽  
I. V. Zorya ◽  
M. D. Starostenkov ◽  
R. Yu. Rakitin
2015 ◽  
Vol 107 ◽  
pp. 134-138 ◽  
Author(s):  
Wenhong Yin ◽  
Weiguo Wang ◽  
Xiaoying Fang ◽  
Congxiang Qin ◽  
Xiaoguang Xing

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5522
Author(s):  
Kai-Cheng Shie ◽  
Po-Ning Hsu ◽  
Yu-Jin Li ◽  
Dinh-Phuc Tran ◽  
Chih Chen

The failure mechanisms of Cu–Cu bumps under thermal cycling test (TCT) were investigated. The resistance change of Cu–Cu bumps in chip corners was less than 20% after 1000 thermal cycles. Many cracks were found at the center of the bonding interface, assumed to be a result of weak grain boundaries. Finite element analysis (FEA) was performed to simulate the stress distribution under thermal cycling. The results show that the maximum stress was located close to the Cu redistribution lines (RDLs). With the TiW adhesion layer between the Cu–Cu bumps and RDLs, the bonding strength was strong enough to sustain the thermal stress. Additionally, the middle of the Cu–Cu bumps was subjected to tension. Some triple junctions with zig-zag grain boundaries after TCT were observed. From the pre-existing tiny voids at the bonding interface, cracks might initiate and propagate along the weak bonding interface. In order to avoid such failures, a postannealing bonding process was adopted to completely eliminate the bonding interface of Cu–Cu bumps. This study delivers a deep understanding of the thermal cycling reliability of Cu–Cu hybrid joints.


2020 ◽  
Vol 105 (8) ◽  
pp. 1161-1174
Author(s):  
Shreya Karmakar ◽  
Subham Mukherjee ◽  
Upama Dutta

Abstract Growth of corundum in metamorphosed anorthosites and related basic-ultra-basic rocks is an exceptional feature, and its origin remains elusive. We describe the occurrence of and offer an explanation for the genesis of corundum in anorthositic amphibolites from ~2.5 Ga old basement of the Granulite Terrane of Southern India (GTSI). The studied amphibolites from two localities, Manavadi (MvAm) and Ayyarmalai (AyAm), contain anorthite lenses (An90–99) with euhedral to elliptical outline set in a finer-grained matrix of calcic plagioclase (An85–90) and aluminous amphibole (pargasite-magnesiohastingsite). The lenses, interpreted as primary magmatic megacrysts, and the matrix are both recrystallized under static condition presumably during the regional high pressure (HP) metamorphism (~800 °C, 8–11 kbar) at ~2.45 Ga. Corundum occurs in the core of some of the recrystallized anorthite lenses (An95–99) in two modes: (1) Dominantly, it forms aggregates with magnetite (with rare inclusion of hercynite; in MvAm) or spinel (and occasionally hematite-ilmenite; in AyAm). The aggregates cut across the polygonal grain boundaries of the anorthite and contain inclusions of anorthite. (2) Corundum also occurs along the grain boundaries or at the triple junctions of the polygonal anorthite grains, where it forms euhedral tabular grains, sieved with inclusions of anorthite or forms skeletal rims around the recrystallized anorthite, such that it seems to be intergrown with anorthite. Combined petrological data and computed phase relations are consistent with growth of corundum in an open system during regional metamorphism in the presence of intergranular fluids. Two mechanisms are proposed to explain the formation of the corundum in the amphibolites: (1) corundum + magnetite/spinel aggregates formed dominantly by oxy-exsolution of pre-existing Al-Fe-Mg-(Ti)-spinel. This pre-existing spinel may be primary magmatic inclusions within the anorthite phenocrysts or could have formed due to reaction of primary magmatic inclusions of olivine with the host anorthite. Pseudosections of fO2-nH2O-T-P in the CaO–FeO–MgO–Al2O3–SiO2–H2O (CFMASH) system indicate that fO2 and H2O strongly influence the formation of corundum + amphibole from the initial magmatic assemblage of anorthite (phenocrysts) + spinel ± olivine (inclusions). (2) The corundum with anorthite presumably formed through desilification and decalcification of anorthite, as is indicated by computed phase relations in isobaric-isothermal chemical potential diagrams (µSiO2-µCaO) in parts of the CASH system. Growth of corundum in this mode is augmented by high activity of anorthite in plagioclase, high pressure, and low-to-medium temperature of metamorphism. This study thus presents a new viable mechanism for the origin of corundum in anorthositic amphibolites, and basic-ultra-basic rocks in general, which should provide new insight into lower crustal processes like high-pressure metamorphism.


2010 ◽  
Vol 654-656 ◽  
pp. 1283-1286 ◽  
Author(s):  
Tetsuya Ohashi ◽  
Michihiro Sato ◽  
Yuhki Shimazu

Plastic slip deformations of tricrystals with simplified geometries are numerically analyzed by a FEA-based crystal plasticity code. Accumulation of geometrically necessary (GN) dislocations, distributions of the total slip, plastic work density and GN dislocations on slip systems, as well as some indices for the intensity of slip multiplication are evaluated. Results show that coexistence of GN dislocations on different slip systems is prominent at triple junctions of grain boundaries.


2000 ◽  
Vol 652 ◽  
Author(s):  
Alessandra Satta ◽  
Luciano Colombo ◽  
Fabrizio Cleri

ABSTRACTTriple junctions are crucial elements in microstructural evolution: for example, their mobility can be rate-limiting if lower than that of grain boundaries. However, very little is known about their atomic-level structure and properties. We studied the atomic structure of multiple-twin triple junctions in silicon, formed by the convergence of two {111} and one {221} symmetric-tilt grain boundaries. Molecular dynamics simulations with the Stillinger-Weber potential and constant-traction border conditions were performed on several triple junction configurations, obtained by different combinations of the three grain boundaries. All the configurations have a positive excess line energy, a measurable volume contraction and display regions of opposite, tensile and compressive, residual stress. Moreover, we tried to elucidate the role of triple junctions as being the seeds of the only microscopic events that can lead to topological changes in the microstructure. Such events, usually dubbed T1 and T2 in mesoscopic models, correspond to grain switching (in the Ashby-Verrall sense) and grain-disappearance events, respectively. We present preliminary results for the atomic-scale modelling of both classes of topological events and discuss the connection between atomistic and mesoscopic modelling of microstructural evolution.


2008 ◽  
Vol 56 (19) ◽  
pp. 5640-5652 ◽  
Author(s):  
T. Eliash ◽  
M. Kazakevich ◽  
V.N. Semenov ◽  
E. Rabkin

Sign in / Sign up

Export Citation Format

Share Document