Roles of structure-dependent hardening at grain boundaries and triple junctions in deformation and fracture of molybdenum polycrystals

2008 ◽  
Vol 483-484 ◽  
pp. 712-715 ◽  
Author(s):  
Shigeaki Kobayashi ◽  
Sadahiro Tsurekawa ◽  
Tadao Watanabe
1988 ◽  
Vol 49 (C5) ◽  
pp. C5-677-C5-680
Author(s):  
I. M. ROBERTSON ◽  
G. M. BOND ◽  
T. C. LEE ◽  
D. S. SHIH ◽  
H. K. BIRNBAUM

2015 ◽  
Vol 107 ◽  
pp. 134-138 ◽  
Author(s):  
Wenhong Yin ◽  
Weiguo Wang ◽  
Xiaoying Fang ◽  
Congxiang Qin ◽  
Xiaoguang Xing

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5522
Author(s):  
Kai-Cheng Shie ◽  
Po-Ning Hsu ◽  
Yu-Jin Li ◽  
Dinh-Phuc Tran ◽  
Chih Chen

The failure mechanisms of Cu–Cu bumps under thermal cycling test (TCT) were investigated. The resistance change of Cu–Cu bumps in chip corners was less than 20% after 1000 thermal cycles. Many cracks were found at the center of the bonding interface, assumed to be a result of weak grain boundaries. Finite element analysis (FEA) was performed to simulate the stress distribution under thermal cycling. The results show that the maximum stress was located close to the Cu redistribution lines (RDLs). With the TiW adhesion layer between the Cu–Cu bumps and RDLs, the bonding strength was strong enough to sustain the thermal stress. Additionally, the middle of the Cu–Cu bumps was subjected to tension. Some triple junctions with zig-zag grain boundaries after TCT were observed. From the pre-existing tiny voids at the bonding interface, cracks might initiate and propagate along the weak bonding interface. In order to avoid such failures, a postannealing bonding process was adopted to completely eliminate the bonding interface of Cu–Cu bumps. This study delivers a deep understanding of the thermal cycling reliability of Cu–Cu hybrid joints.


2018 ◽  
Vol 82 (9) ◽  
pp. 1125-1129
Author(s):  
G. M. Poletaev ◽  
I. V. Zorya ◽  
M. D. Starostenkov ◽  
R. Yu. Rakitin

2020 ◽  
Vol 105 (8) ◽  
pp. 1161-1174
Author(s):  
Shreya Karmakar ◽  
Subham Mukherjee ◽  
Upama Dutta

Abstract Growth of corundum in metamorphosed anorthosites and related basic-ultra-basic rocks is an exceptional feature, and its origin remains elusive. We describe the occurrence of and offer an explanation for the genesis of corundum in anorthositic amphibolites from ~2.5 Ga old basement of the Granulite Terrane of Southern India (GTSI). The studied amphibolites from two localities, Manavadi (MvAm) and Ayyarmalai (AyAm), contain anorthite lenses (An90–99) with euhedral to elliptical outline set in a finer-grained matrix of calcic plagioclase (An85–90) and aluminous amphibole (pargasite-magnesiohastingsite). The lenses, interpreted as primary magmatic megacrysts, and the matrix are both recrystallized under static condition presumably during the regional high pressure (HP) metamorphism (~800 °C, 8–11 kbar) at ~2.45 Ga. Corundum occurs in the core of some of the recrystallized anorthite lenses (An95–99) in two modes: (1) Dominantly, it forms aggregates with magnetite (with rare inclusion of hercynite; in MvAm) or spinel (and occasionally hematite-ilmenite; in AyAm). The aggregates cut across the polygonal grain boundaries of the anorthite and contain inclusions of anorthite. (2) Corundum also occurs along the grain boundaries or at the triple junctions of the polygonal anorthite grains, where it forms euhedral tabular grains, sieved with inclusions of anorthite or forms skeletal rims around the recrystallized anorthite, such that it seems to be intergrown with anorthite. Combined petrological data and computed phase relations are consistent with growth of corundum in an open system during regional metamorphism in the presence of intergranular fluids. Two mechanisms are proposed to explain the formation of the corundum in the amphibolites: (1) corundum + magnetite/spinel aggregates formed dominantly by oxy-exsolution of pre-existing Al-Fe-Mg-(Ti)-spinel. This pre-existing spinel may be primary magmatic inclusions within the anorthite phenocrysts or could have formed due to reaction of primary magmatic inclusions of olivine with the host anorthite. Pseudosections of fO2-nH2O-T-P in the CaO–FeO–MgO–Al2O3–SiO2–H2O (CFMASH) system indicate that fO2 and H2O strongly influence the formation of corundum + amphibole from the initial magmatic assemblage of anorthite (phenocrysts) + spinel ± olivine (inclusions). (2) The corundum with anorthite presumably formed through desilification and decalcification of anorthite, as is indicated by computed phase relations in isobaric-isothermal chemical potential diagrams (µSiO2-µCaO) in parts of the CASH system. Growth of corundum in this mode is augmented by high activity of anorthite in plagioclase, high pressure, and low-to-medium temperature of metamorphism. This study thus presents a new viable mechanism for the origin of corundum in anorthositic amphibolites, and basic-ultra-basic rocks in general, which should provide new insight into lower crustal processes like high-pressure metamorphism.


1995 ◽  
Vol 409 ◽  
Author(s):  
D. K. Chan ◽  
D. H. Lassila ◽  
W. E. King ◽  
E. L. Baker

AbstractWe have observed that a change in the bulk sulfur content of oxygen-free electronic copper markedly affects its high temperature (400–1000°C), high strain-rate (> 103 s−1) deformation and fracture behavior. These conditions are typical of those found in "jets" formed from the explosive deformation of copper shaped-charge liners. Specifically, an increase in the bulk sulfur concentration from 4 ppm to 8 ppm shortens the breakup time, tb, of the copper jets by nearly 20% as measured using flash x-ray radiographs recorded during breakup of the jets. At bulk concentrations of 4 ppm, the jet was observed to be uniform and axisymmetric with a breakup time of 186 µs. Jet particles exhibited length-to-diameter ratios of roughly 8:1. The addition of sulfur transformed the jet breakup behavior to non-uniform, non-axisymmetric rupture and reduced the breakup time to 147 µs. The length-to-diameter ratios decreased to roughly 5:1 in the sulfurdoped samples. Previously measured sulfur solubilities and diffusivities in copper at the temperatures where this material was processed indicates nearly all of the sulfur was localized to grain boundaries. Therefore, we infer that the increase in sulfur content at grain boundaries is directly responsible for the change in breakup performance of the shaped-charge jets.


1990 ◽  
Vol 186 ◽  
Author(s):  
V. Vitek ◽  
G. J. Ackland ◽  
J. Cserti

AbstractExtended defects, such as dislocations and grain boundaries, control a wide variety of material properties and their atomic structure is often a governing factor. A necessary precursor for modeling of these structures is a suitable description of atomic interactions. We present here empirical many-body potentials for alloys which represent a very simple scheme for the evaluation of total energies and yet reflect correctly the basic physical features of the alloy systems modeled. As examples of atomistic studies we show results of calculations of the core structures of screw dislocations in Ll2 compounds. The same potentials have also been used to calculate structures of grain boundaries in these compounds. The deformation and fracture behavior of Ll2 alloys is then discussed in the light of grain boundary and dislocation core studies.


Sign in / Sign up

Export Citation Format

Share Document