Surface roughness in diamond abrasive finishing

2009 ◽  
Vol 31 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Yu. D. Filatov ◽  
V. I. Sidorko ◽  
A. Yu. Filatov ◽  
S. V. Kovalev ◽  
U. Heisel ◽  
...  
2009 ◽  
Vol 31 (5) ◽  
pp. 338-346 ◽  
Author(s):  
Yu. D. Filatov ◽  
V. P. Yashchuk ◽  
A. Yu. Filatov ◽  
U. Heisel ◽  
M. Storchak ◽  
...  

2020 ◽  
Vol 2020 (9) ◽  
pp. 13-17
Author(s):  
Yuriy Ryzhov ◽  
Svetlana Abramova

There is carried out a number of experiments with the purpose of analyzing SOTS impact upon both finishing productivity, and physical-chemical state and tribological behavior of surfaces machined, and also a possibility for creation according to the results of the investigations carried out a relatively universal micro-emulsion SOTS based on existing in the Ukraine the line of oils, PAV, corrosion inhibitors, alloying additives etc. As SOTS samples there were used both well-known compouds, for example, Camix, Nope Right (USA), and carbamide having in its structure boron, boron-phosphorus-containing additive, water-solvable phosphate, tributyl phosphate (oil-solvable), concentrate SOTS tribol, having in its structure compounds of boron, nitrogen and phosphorous; ethylic ether of fatty acids; methyl ether of colza oil; Sarkozyl-O having in its structure easily-decomposable chlorine compounds. From the results obtained it is possible to draw a conclusion that during finishing in the environment of water-compatible SOTS an important role in the formation of the properties of the surface worked is played by hydrocarbon components and additives which contribute to the formation of the thinnest surface layers modified with carbon and oxygen.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Jason Ratay ◽  
Pei-Ying Wu ◽  
Alex Feirvezers ◽  
Hitomi Yamaguchi

Abstract Nickel-based superalloys have a wide range of high-temperature applications such as turbine blades. The complex geometries of these applications and the specific properties of the materials raise difficulties in the surface finishing. Magnetic abrasive finishing (MAF) has proven effective in finishing the complex geometries. In MAF, the magnetic properties of the workpiece, tool, and abrasive play important roles in controlling finishing characteristics. This paper presents the effects of nickel coating on the abrasive behavior during finishing and resulting finishing characteristics of Ni-based superalloys. The Ni-coated diamond abrasive is more attracted to the magnet than the Ni-based superalloy surface. As a result, fewer Ni-coated diamond abrasive particles, which are stuck between the magnetic-particle brush and the target surface, participate in surface finishing. Because of this, coupled with the reduced sharpness of abrasive cutting edges due to the coating, Ni-coated diamond abrasive cannot effectively smooth the target surface in MAF. However, the Ni coating is worn off during finishing of the hard, rough, additively manufactured surface. Then, the diamond abrasive participates in finishing as uncoated diamond abrasive and facilitates the material removal, finishing the target surface.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 464 ◽  
Author(s):  
Joonhyuk Song ◽  
Takeo Shinmura ◽  
Sang Don Mun ◽  
Minyoung Sun

The research aims to describe the micro-machining characteristics in a high-speed magnetic abrasive finishing, which is applicable for achieving the high surface accuracy and dimensional accuracy of fine ceramic bars that are typically characterized by strong hardness and brittle susceptibility. In this paper, the high-speed magnetic abrasive finishing was applied to investigate how the finishing parameters would have effects on such output parameters as surface roughness, variation of diameters, roundness, and removed weight. The results showed that, under variants of diamond abrasives sizing between (1, 3 and 9 µm), 1 µm showed comparatively good values as for surface roughness and roundness within shortest processing time. When the optimal condition was used, the surface roughness Ra and roundness (LSC) were improved to 0.01 µm and 0.14 µm, respectively. The tendency of diameter change could be categorized into two regions—stable and unstable. The finding from the study was that the performance of ultra-precision processing linear controlling was possibly achievable for the stable region of diameter change, while linearly controlling diameters in the workpiece.


2006 ◽  
Vol 304-305 ◽  
pp. 384-388
Author(s):  
Shu Ren Zhang ◽  
W.N. Liu

Magnetic Abrasive Finishing (MAF) is relatively a new finishing technique that employs the magnetic force for finishing. In the paper, finishing mechanism of MAF is studied and four self-sharpening modes of abrasive particles are put forward. With the cylindrical magnetic abrasive apparatus designed and made by the author, a series of experiments on finishing the cylindrical surfaces of nonferromagnetic materials and ferromagnetic materials are carried out. The influence of technical parameters (finishing speed, feed speed, finishing time and so on) on finishing performance is analyzed. Choosing the optimized technical parameters, , the surface roughness of ferromagnetic materials changes from Ra 0.825µm to Ra 0.045µm after the 12-minute finishing experiment; the surface roughness of nonferromagnetic materials changes from Ra 0.434µm to Ra 0.096µm after the 20-minute finishing experiment.


2013 ◽  
Vol 589-590 ◽  
pp. 457-463 ◽  
Author(s):  
Zhi Du ◽  
Jing Lu ◽  
Cong Fu Fang ◽  
Hui Huang ◽  
Xi Peng Xu

In this paper, diamond abrasive SG films were prepared by means of sol-gel technology for polishing single-crystal SiC wafers. The effects of machining parameters on processing quality including pressure, rotating speed and polishing time were investigated, respectively. The results indicated that the surface roughness decreased with increasing polishing time. While for pressure and rotating speed, there were inflections existing. Polishing SiC wafer under optimized machining parameters, an ultra smooth surface with the roughness of 3.7 nm could be achieved using 40 μm diamond grits.


Sign in / Sign up

Export Citation Format

Share Document