Destruction of Strain Hardened Steel Upon Abrasive Wear

2021 ◽  
Vol 42 (3) ◽  
pp. 178-184
Author(s):  
V. I. Dvoruk ◽  
K. V. Borak ◽  
I. O. Buchko ◽  
S. S. Dobranskiy
Keyword(s):  
Author(s):  
Jiří Votava ◽  
Michal Černý ◽  
Josef Filípek

The particular samples were made of the steel 14 260 and were exposed to following different heat treatments − soft annealing, normalizing, heat refining and hardening. After these heat treatments the samples were exposed both laboratory tests and also field tests. The wear test particles was carried out on the device with abrasive canvas. The laboratory test was realized in room temperature and normal atmospheric pressure. Measured values were statistically and graphically analyzed and interpreted. Results of the tests confirmed our preliminary expectations that the extent of the wear would depend on the value of hardness of the used materials. The hardest structure of the hardened steel had the smallest material decrease compared to the largest decrease of the soft annealing steel.Tested samples were fixed to a cutting edge of a ploughing aggregate which performed work in previously determined sector area. At intervals of each 400 meters there were measured decreases of weights and surfaces of the samples and consequently were evaluated and graphically interpreted relating abrasive wear of the particular samples. Also in this test the results form previous laborator test were confirmed and the smallest wear had the hardened steel samples.On the basis of the measured values we can deduce the high importance of the right choice of the adequate material which is able to resist to the wearing process best. This decision will significantly affect not only the length of the service life of the particular parts but also the whole machinery as well as its economic operation.


Author(s):  
T. E. Mitchell ◽  
P. B. Desch ◽  
R. B. Schwarz

Al3Zr has the highest melting temperature (1580°C) among the tri-aluminide intermetal1ics. When prepared by casting, Al3Zr forms in the tetragonal DO23 structure but by rapid quenching or by mechanical alloying (MA) it can also be prepared in the metastable cubic L12 structure. The L12 structure can be stabilized to at least 1300°C by the addition of copper and other elements. We report a TEM study of the microstructure of bulk Al5CuZr2 prepared by hot pressing mechanically alloyed powder.MA was performed in a Spex 800 mixer using a hardened steel container and balls and adding hexane as a surfactant. Between 1.4 and 2.4 wt.% of the hexane decomposed during MA and was incorporated into the alloy. The mechanically alloyed powders were degassed in vacuum at 900°C. They were compacted in a ram press at 900°C into fully dense samples having Vickers hardness of 1025. TEM specimens were prepared by mechanical grinding followed by ion milling at 120 K. TEM was performed on a Philips CM30 at 300kV.


2008 ◽  
Vol 4 (1) ◽  
pp. 1-26
Author(s):  
Gábor Kalácska

Research was performed on the friction, wear and efficiency of plastic gears made of modern engineering polymers and their composites both in a clean environment (adhesive sliding surfaces) and in an environment contaminated with solid particles and dust (abrasive), with no lubrication at all. The purpose is to give a general view about the results of abrasive wear tests including seven soil types as abrasive media. At the first stage of the research silicious sand was applied between the meshing gears and the wear of plastic and steel gears was evaluated and analyzed from the point of different material properties (elongation at break, hardness, yield stress, modulus of elasticity) and its combinations. The different correlations between the experienced wear and material features are also introduced. At the second stage of the project the abrasive sand was replaced with different physical soil types. The abrasive wear of gears is plotted in the function of soil types. The results highlight on the considerable role of physical soil types on abrasive wear resistance and the conclusions contain the detailed wear resistance. The results offer a new tribology database for the operation and maintenance of agricultural machines with the opportunity of a better material selection according to the dominant soil type. This can finally result longer lifetime and higher reliability of wearing plastic/steel parts.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Alloy Digest ◽  
1969 ◽  
Vol 18 (3) ◽  

Abstract Dargraph is an oil-hardening, graphitic steel having excellent resistance to abrasive wear, galling, scuffing and scoring. It is recommended for drawing and forming dies, bushings, pneumatic hammers, wear plates, etc. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-216. Producer or source: Darwin & Milner Inc..


Alloy Digest ◽  
2020 ◽  
Vol 69 (3) ◽  

Abstract Böhler K100 is a high-carbon, high-chromium (12%), alloy cold-work tool steel that is suitable for medium run tooling in applications where a very good abrasive wear resistance is needed but where demands on chipping resistance are small. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming and machining. Filing Code: TS-788. Producer or source: voestalpine Böhler Edelstahl GmbH & Co.


Alloy Digest ◽  
2019 ◽  
Vol 68 (4) ◽  

Abstract Sandvik APM 2730 is a powder metallurgical alloyed hot-isostatic-pressed high-speed tool steel with abrasive wear resistance and high-compressive strength. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-763. Producer or source: Sandvik Steel Company.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract THYRODUR 2379 (AISI D2) is an air hardening, high carbon chromium die steel, well suited for long run tool and die applications. It is capable of great hardness and high resistance to abrasive wear. It is non-deforming; consistent in response to all machining, heat treating and production operations; and is somewhat corrosion resistant. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on heat treating and machining. Filing Code: TS-520. Producer or source: Thyssen Specialty Steels Inc.


Sign in / Sign up

Export Citation Format

Share Document