NEUTRALIZATION OF THE ANTICOAGULANT ACTIVITY OF HEPARIN BY CONJUGATES QUATERNIZED CHITOSAN WITH GALLIC ACID

2018 ◽  
Vol 2 (3) ◽  
pp. 7-12
Author(s):  
N.N. Drozd ◽  
◽  
A.P. Lun'kov ◽  
A.V. Il'ina ◽  
V.P. Varlamov ◽  
...  
Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
M Koşar ◽  
F Göger ◽  
N Kırımer ◽  
KHC Başer

1999 ◽  
Vol 82 (11) ◽  
pp. 1462-1468 ◽  
Author(s):  
José Fernández ◽  
Jari Petäjä ◽  
John Griffin

SummaryUnfractionated heparin potentiates the anticoagulant action of activated protein C (APC) through several mechanisms, including the recently described enhancement of proteolytic inactivation of factor V. Possible anticoagulant synergism between APC and physiologic glycosaminoglycans, pharmacologic low molecular weight heparins (LMWHs), and other heparin derivatives was studied. Dermatan sulfate showed potent APC-enhancing effect. Commercial LMWHs showed differing abilities to promote APC activity, and the molecular weight of LMWHs correlated with enhancement of APC activity. Degree of sulfation of the glycosaminoglycans influenced APC enhancement. However, because dextran sulfates did not potentiate APC action, the presence of sulfate groups per se on a polysaccharide is not sufficient for APC enhancement. As previously for unfractionated heparin, APC anticoagulant activity was enhanced by glycosaminoglycans when factor V but not factor Va was the substrate. Thus, dermatan sulfate and LMWHs exhibit APC enhancing activity in vitro that could be of physiologic and pharmacologic significance.


1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


1993 ◽  
Vol 70 (03) ◽  
pp. 454-457 ◽  
Author(s):  
Claus Bregengaard ◽  
Ole Nordfang ◽  
Per Østergaard ◽  
Jens G L Petersen ◽  
Giorgio Meyn ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a feed back inhibitor of the initial activation of the extrinsic pathway of coagulation. In humans, injection of heparin results in a 2-6 fold increase in plasma TFPI and recent studies suggest that TFPI may be important for the anticoagulant activity of heparin. Full length (FL) TFPI, but not recombinant two-domain (2D) TFPI, has a poly cationic C-terminus showing very strong heparin binding. Therefore, we have investigated if heparin affects the pharmacokinetics of TFPI with and without this C-terminus.FL-TFPI (608 U/kg) and 2D-TFPI (337 U/kg) were injected intravenously in rabbits with and without simultaneous intravenous injections of low molecular weight heparin (450 anti-XaU/kg).Heparin decreased the volume of distribution and the clearance of FL-TFPI by a factor 10-15, whereas the pharmacokinetics of 2D-TFPI were unaffected by heparin. When heparin was administered 2 h following TFPI the recovery of FL-TFPI was similar to that found in the group receiving the two compounds simultaneously, suggesting that the releasable pool of FL-TFPI is removed very slowly in the absence of circulating heparin.


Sign in / Sign up

Export Citation Format

Share Document