scholarly journals The efficiency of modernization of the on-farm irrigation network based on the principle of self-regulation

Author(s):  
V. M. Popov ◽  
M. M. Targoniy ◽  
N. V. Soroka

Relevance of research. The research is aimed at substantiating the effectiveness of the principle of self-regulation on closed irrigation systems (CIS) with sprinkling machine (SM) with the use of daily regulation pools (DRP) and "pull" pressure regulators when modernizing them. Aim and objectives of research. The aim of the research is to reduce the energy intensity of water supply for irrigation by increasing pump load rates (PLR) of pumping stations (PS) and expanding the area of ​​irrigation when modernizing and reconstructing closed irrigation networks (CIS). The construction of self-regulating CIS reduces accidental disturbances in the form of discrete changes in volumetric water flow rates generated by pumping units (PU) of PS, which minimizes unproductive discharges of water from distribution canals when performing inter-farm water distribution. Research methods: experimental, mathematical modeling and mathematical statistics. Research results. To substantiate the effectiveness of self-regulation, the results of experimental studies conducted in the operating area of ​​the distribution canal R-1 with machine water supply of Kakhovska Irrigation System, aimed at determining the hydraulic characteristics of existing CIS, energy characteristics of PU of PS. Statistical characteristics of water supply and power consumption processes on CIS equipped with SM from the PS13-R-1, which is equipped with four PU of  250QVD570-50 brand with diameters of rotor wheels Drw = 540 mm and drive motors of 1N435Z-4 brand with a capacity of 400 kW. PS operates on the CIS equipped with SM "Frigate" and drip irrigation system and serves two water users on a total area of ​​1036.0 hectares. To determine the statistical characteristics of the processes of water supply and power consumption, the graphs of pumped water volumes and the graphs of electricity obtained using electricity meters "ORION-01", as well as the graphs of planned water supply, built on daily applications for water use, are used. The logical-mathematical model of operative control of water supply on self-regulating CIS with application of DRP and “pull” pressure regulators is given. The substantiation of the efficiency of water supply management on the modernized CIS from PS13-R-1 was carried out using a mathematical model. Key words: self-regulation, modernization, closed irrigation system, daily regulation pool, statistical characteristics, water supply process, pump unit.   Conclusions: The efficiency of the construction of self-regulating CISs with SMs with the use of daily regulation pools (DRP) and "pull" pressure regulators has been proved. Modernization and reconstruction of CISs on the principles of self-regulation provides: expansion of irrigation areas, reduction of energy consumption in water supply, coordination of water distribution management on open inter-farm and closed in-farm irrigation network, which enables to minimize non-technological water discharges from distribution channels and to prevent wasteful consumption of electricity for its pumping by the main water intake pumping stations.  

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1440 ◽  
Author(s):  
Jorge García Morillo ◽  
Juan A. Rodríguez Díaz ◽  
Miguel Crespo ◽  
Aonghus McNabola

In Spain and other countries, open channel distribution networks have been replaced by on demand-pressurized networks to improve the water-use efficiency of the water distribution systems, but at the same time the energy requirements have dramatically risen. Under this scenario, methodologies to reduce the energy consumption are critical such as: irrigation network sectoring, critical hydrant detection, improving the efficiency of the pumping system and the irrigation system, or introducing solar energy for water supply. But once these measures are undertaken, the recovery of the energy inherent in excess pressure in the network should be investigated. Hydropower energy recovery in irrigation is still largely unexplored and requires further investigation and demonstration. All of these methodologies should be considered as useful tools for both, the reduction of energy consumption and the recovery of the excess energy in pressurized irrigation networks. To accomplish this, the REDAWN project (Reducing Energy Dependency in Atlantic Area Water Networks) aims to improve the energy efficiency of water networks through the installation of innovative micro-hydropower (MHP) technology. This technology will recover wasted energy in existing pipe networks across irrigation, public water supply, process industry, and waste-water network settings.


2016 ◽  
Vol 19 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Milan Cisty ◽  
Zbynek Bajtek ◽  
Lubomir Celar

In this work, an optimal design of a water distribution network is proposed for large irrigation networks. The proposed approach is built upon an existing optimization method (NSGA-II), but the authors are proposing its effective application in a new two-step optimization process. The aim of the paper is to demonstrate that not only is the choice of method important for obtaining good optimization results, but also how that method is applied. The proposed methodology utilizes as its most important feature the ensemble approach, in which more optimization runs cooperate and are used together. The authors assume that the main problem in finding the optimal solution for a water distribution optimization problem is the very large size of the search space in which the optimal solution should be found. In the proposed method, a reduction of the search space is suggested, so the final solution is thus easier to find and offers greater guarantees of accuracy (closeness to the global optimum). The method has been successfully tested on a large benchmark irrigation network.


Author(s):  
Volodymyr Lyubenko

The article analyzes components that have an impact on electricity consumption in the general water supply and distribution system, in particular those that affect the power consumption of pumping stations of the water supply system.This type of pumping units will only increase, as they are the main component of housing and communal services, which reached us inherited. Currently in housing and communal services, the model of the USSR, pumping equipment is completely worn and requires a replacement. The use of outdated pumps, unsatisfactory state of the water supply network, uneconomically use of water by consumers - are considered as the main factors of electricity loss. The purpose of the article is to attract attention to the problem of excessive use of electricity in the general water supply and distribution system. Possible variations are considered to reduce costs and losses of electricity, namely: rational use of existing landing and networks, introduction of the latest technologies, etc.


Author(s):  
V. Biriukov ◽  
S. Nagornyi ◽  
M. Chernosvitov ◽  
N. Gladyshev

Приведена информация о реконструкции насосных станций подкачки в г. Самаре. Описаны основные методы и средства ее поэтапной реализации. Для оптимизации работы водопроводных сетей и сооружений, выявления неучтенных потерь и расходов воды в системе, снижения расходов потребления сооружениями электроэнергии необходимо проводить комплекс мероприятий, в том числе с использованием программных решений, программ гидравлического моделирования работы системы водоснабжения. Приведены значения месячного и годового потребления электроэнергии и подачи воды для повысительных насосных станций, реконструированных в 2015 и 2018 годах. Определено снижение расходуемой электроэнергии на перекачку воды. Оценено изменение подачи воды повысительными насосными станциями после реконструкции. Сделано предположение о причинах возможного отсутствия снижения подачи воды при реконструкции насосных станций с учетом стабилизации давления на выходе.Information on the reconstruction of pumping stations in Samara is presented. The basic methods and means of its phased implementation are described. In order to optimize the operation of the water distribution network and structures, to identify unaccounted-for-losses and water flow rate in the system, to reduce the consumption of electricity by the facilities, a package of measures including the use of IT solutions, software for hydraulic modeling of the water supply system shall be carried out. The values of monthly and annual electricity consumption and water supply for booster pumping stations reconstructed in 2015 and 2018 are given. The decrease in energy consumption for pumping water is determined. The change in water supply by booster pumping stations after reconstruction is estimated. An assumption is made about the reasons for the possible absence of a decrease in water supply during the reconstruction of pumping stations taking into account the pressure stabilization at the outlet.


Author(s):  
T. T. Bekibayev ◽  
◽  
U. K. Zhapbasbayev ◽  
G. I. Ramazanova ◽  
A. D. Minghat ◽  
...  

The paper is devoted to the simulating of non-stationary processes of shutdown and restart on the example of a section of the Zhetybai-Uzen “hot” oil pipeline. A mathematical model of thermal-hydraulic calculation is given taking into account the rheological properties of the pumping oil. The special module of the SmartTran software developed by the work’s authors carried out the calculations. In the calculations, the decrease in time of oil temperature in the pipeline during cooling and the increase in oil pressure, temperature, velocity after the restart are determined. In addition, the calculations determine the power of pumping units, heating furnaces and the power consumption, which are necessary for restart of the pipeline after the shutdown. Simulation the processes of the pipeline cooling and restart after a shutdown makes it possible choosing the optimum parameters of pumping units at pumping stations and the time of safe shutdown of the oil pipeline.


2021 ◽  
Vol 58 (1) ◽  
pp. 1636-1639
Author(s):  
Thanwamas Kassanuk, Khongdet Phasinam

The aim of this research was to evaluate the irrigation consumption for the growth of Kangkong (Ipomoea aquatica Forsk. Var. reptan). The system based on drip irrigation for crops. Drip irrigation system consisted of a 16-liter water tank, a water supply facilities and water supply systems. The water tank is raised 1,000 mm above the ground, connected by a 18 mm (1/2 in) PVC pipe at the conversion head. Drip tape is paying a hole measuring 100 mm. The rate of water distribution is equal to 2.20 liters per hour, consisting of 6 lines. Each line had a distance of 200 mm, according to the plantation. According to the characteristics of the plot, which had 60 wells and provides 25 days of water throughout the harvest of Kangkong. The research found that water consumption of Kangkong average of 108.5 mm or 4.4 millimeters per day. The average height was 334 millimeters per plant. The average weight was 8.96 grams per plant. The average root length was 89.6 mm. Number of leaves was 12 per plant. The average leaf length was 131.3 mm and the average yield of Kangkong throughout the season was 4.93 kg


2020 ◽  
Vol 0 (2) ◽  
pp. 21-25
Author(s):  
Nikolay Dubenok ◽  
Andrey Novikov ◽  
Sergei Borodychev ◽  
Maria Lamskova

At the stage of water treatment for irrigation systems, the efficiency capture coarse and fine mechanical impurities, as well as oil products and organic compounds affects the reliability of the equipment of the irrigation network and the safety of energy exchange processes in irrigated agricultural landscapes. The violation of work irrigation system can cause disruptions in irrigation schedules of agricultural crops, crop shortages, degradation phenomena on the soil and ecological tension. For the combined irrigation system, a water treatment unit has been developed, representing a hydrocyclone apparatus with a pipe filter in the case. For the capacity of 250 m3/h the main geometrical dimensions of hydrocyclone have been calculated. To organize the capture petroleum products and organic compounds, it has been proposed a modernization of a hydrocyclone unit, consisting in dividing the cylindrical part of the apparatus into two section. The first is section is for input irrigation water, the second one is for additional drainage of clarified irrigation water after sorption purification by the filter, placed on the disk and installed coaxially with the drain pipe and the pipe filter.


Sign in / Sign up

Export Citation Format

Share Document