scholarly journals Assessment of the influence of the Viriva granite quarry on the condition of the surface and ground waters within the Vyry village

Author(s):  
S. A. Shevchuk ◽  
O. V. Zorina ◽  
A. M. Shevchenko ◽  
O. M. Kozytsky ◽  
Y. O. Mavrykin

Analyzed the results of their own research to assess the impact of the Vyrovsky granite quarry on the state of surface and ground waters within the village of Vyry, Sarny district, Rivne region of Ukraine. Research methods: hydrogeological, sanitary-chemical, analytical. It has been established that the technological process of extracting granite and producing construction crushed stone does not involve the use of a large amount of water. Pit water is used as process water without additional intake of surface or groundwater. The main problems during the exploitation of the car, which are found on the enterprises, are connected with water. The stench is overwhelmed by the surging of ground and surface waters and the need for input for the safety of normal minds of their exploitation. Significant watering of the area's surface is due to the abundance of atmospheric precipitation, relatively flat relief, the presence of a small thickness of sedimentary rocks covering the crystalline massifs. So, the chemical and biological pollution of the river. The extraction by quarry waters does not occur, since the results of laboratory studies of the quarry water did not show its contamination. In general, the Vyrovsky granite quarry does not affect the volume of the river flow. Alignment, for a long time of operation of the Vyrovsky granite quarry, the groundwater levels of the aquifer have already been established and currently remain relatively stable. Further development of the open pit area will not affect the lowering of the groundwater level within the village. Vyry. Decrease in water levels in wells and wells within the village. Vyry in recent years (2015-2020) is associated with climatic changes, which led to a decrease in precipitation, an increase in temperature and evaporation and, as a consequence, a very low water content in rivers practically throughout Ukraine.

2020 ◽  
Author(s):  
Marjolein H.J. van Huijgevoort ◽  
Janine A. de Wit ◽  
Ruud P. Bartholomeus

<p>Extreme dry conditions occurred over the summer of 2018 in the Netherlands. This severe drought event led to very low groundwater  and surface water levels. These impacted several sectors like navigation, agriculture, nature and drinking water supply. Especially in the Pleistocene uplands of the Netherlands, the low groundwater levels had a large impact on crop yields and biodiversity in nature areas. Projections show that droughts with this severity will occur more often in the future due to changes in climate. To mitigate the impact of these drought events, water management needs to be altered.</p><p>In this study, we evaluated the 2018 drought event in the sandy regions of the Netherlands and studied which measures could be most effective to mitigate drought impact. We have included meteorological, soil moisture and hydrological drought and the propagation of the drought through these types. Droughts were determined with standardized indices (e.g. Standardized Precipitation Index) and the variable threshold level method. Investigated measures were, for example, higher water levels in ditches, reduced irrigation from groundwater, and increased water conservation in winter. We also studied the timing of these measures to determine the potential for mitigating effects during a drought versus the effectiveness of long term adaptation. The measures were simulated with the agro-hydrological Soil–Water–Atmosphere–Plant (SWAP) model for several areas across the Netherlands for both agricultural fields and nature sites.</p><p>As expected, decreasing irrigation from groundwater reduced the severity of the hydrological drought in the region. Severity of the soil moisture drought also decreased in fields that were never irrigated due to the effects of capillary rise from the groundwater, but, as expected, increased in currently irrigated fields. Increasing the level of a weir in ditches had a relatively small effect on the hydrological drought, provided water was available to sustain higher water levels. This measure is, therefore, better suited as a long term change than as ad hoc measure during a drought. The effectiveness of the measures depended on the characteristics of the regions; for some regions small changes led to increases in groundwater levels for several months, whereas in other regions effects were lost after a few weeks. This study gives insight into the most effective measures to mitigate drought impacts in low-lying sandy regions like the Netherlands.</p>


2012 ◽  
Vol 5 (2) ◽  
pp. 1159-1178 ◽  
Author(s):  
C. Prudhomme ◽  
T. Haxton ◽  
S. Crooks ◽  
C. Jackson ◽  
A. Barkwith ◽  
...  

Abstract. The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.


Author(s):  

A detailed analysis of river flow long-term changes in the Southern taiga subzone of Western Siberia has been carried out with the Chaya River basin as an example. Causal statistical analysis of changes in groundwater levels, bog water level, air temperature and atmospheric precipitation has been performed. The conducted studies revealed a statistically significant trend in the increase of surface runoff in the winter low flow of the Chaya River and its large tributaries (the Iksa and the Parbig), as well as the underground runoff component for virtually the entire year. An ambiguous regularity has been observed in the change of the level regime of rivers. The main reason for the observed changes in the water regime of the said territory is the redistribution of atmospheric moisture and shifting of the boundaries of hydrological seasons.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1946
Author(s):  
Tamás Mester ◽  
György Szabó ◽  
Dániel Balla

In the present study, the impact of the construction of the sewerage network (2014) on groundwater quality was studied on the example of a middle-sized settlement in the Great Hungarian Plain and changes in water quality were assessed using GIS and multivariate statistical analysis. As a result of the pollution that has been going on for decades, the groundwater supply of the municipality has become heavily polluted. In the period before sewerage (2011–2013), clear spatial differences were shown in the degree of contamination in the area of the settlement: the degree of contamination increased in the direction of local groundwater flow. Based on our results, the construction of the sewerage network resulted in marked changes in the quality of groundwater wells. Our studies showed a clear decrease in the concentrations of inorganic pollutants (NH4+, NO2−, NO3−, PO43−). In the fifth year of the post-sewerage period (2019), the clear spatial difference between wells was eliminated. We have observed a strong descent (1.5 to 2 m) in groundwater levels in the post-sewerage period, the reason for that is clearly due to that wastewater outflow was eliminated. On this basis, it can be declared that the purification processes in the area have started, but at the same time, our results show that pollutants entering environment undergo a number of transformations and remain in the system for a long time.


2004 ◽  
Vol 55 (11) ◽  
pp. 1159 ◽  
Author(s):  
Riasat Ali ◽  
Tom Hatton ◽  
Richard George ◽  
John Byrne ◽  
Geoff Hodgson

Abstract. Over one million hectares of the wheatbelt of Western Australia (WA) are affected by secondary salinisation and this area is expected to increase to between 3 and 5 million hectares if current trends continue. Deep open drains, as an engineering solution to dryland salinity, have been promoted over the past few decades; however, the results of initial experiments were variable and no thorough analysis has been done. This research quantifies the effects of deep open drains on shallow and deep groundwater at farm and subcatchment level. Analysis of rainfall data showed that the only dry year (below average rainfall) after the construction of drainage in the Narembeen area of WA (in 1998 and 1999) was 2002. The dry year caused some decline in groundwater levels in the undrained areas but had no significant impact in the drained areas. The study found that the effect of drains on the groundwater levels was particularly significant if the initial water levels were well above the drain bed level, permeable materials were encountered, and drain depth was adequate (2.0–3.0 m). Visual observations and evidence derived from this study area suggested that if the drain depth cut through more permeable, macropore-dominated siliceous and ferruginous hardpans, which exist 1.5–3 m from the soil surface, its efficiency exceeded that predicted by simple drainage theory based on bulk soil texture. The effect of drains often extended to distances away (>200 m) from the drain. Immediately following construction, drains had a high discharge rate until a new hydrologic equilibrium was reached. After equilibrium, flow largely comprised regional groundwater discharge and was supplemented by quick responses driven by rainfall recharge. Comparison between the hydrology of the drained and undrained areas in the Wakeman subcatchment showed that, in the valley floors of the drained areas, the water levels fluctuated mainly between 1.5 and 2.5 m of the soil surface during most of the year. In the valley floors of the undrained areas, they fluctuated between 0 and 1 m of the soil surface. The impact of an extreme rainfall event (or unusual wet season) on drain performance was predicted to vary with distance from the drain. Within 100 m from the drain, water levels declined relatively quickly, whereas it took a year before the water levels at 200–300 m away from the drain responded. The main guidelines that can be recommended based on the results from this study are the drain depth and importance of ferricrete layer. In order to be effective, a drain should be more than 2 m deep and it should cut through the ferricrete layer that exists in many landscapes in the wheatbelt.


2009 ◽  
Vol 13 (11) ◽  
pp. 2055-2068 ◽  
Author(s):  
A. L. Gonzales ◽  
J. Nonner ◽  
J. Heijkers ◽  
S. Uhlenbrook

Abstract. Assessment of water resources available in different storages and moving along different pathways in a catchment is important for its optimal use and protection, and also for the prediction of floods and low flows. Moreover, understanding of the runoff generation processes is essential for assessing the impacts of climate and land use changes on the hydrological response of a catchment. Many methods for base flow separation exist, but hardly one focuses on the specific behaviour of temperate lowland areas. This paper presents the results of a base flow separation study carried out in a lowland area in the Netherlands. In this study, field observations of precipitation, groundwater and surface water levels and discharges, together with tracer analysis are used to understand the runoff generation processes in the catchment. Several tracer and non-tracer based base flow separation methods were applied to the discharge time series, and their results are compared. The results show that groundwater levels react fast to precipitation events in this lowland area with shallow groundwater tables. Moreover, a good correlation was found between groundwater levels and discharges suggesting that most of the measured discharge also during floods comes from groundwater storage. It was estimated using tracer hydrological approaches that approximately 90% of the total discharge is groundwater displaced by event water mainly infiltrating in the northern part of the catchment, and only the remaining 10% is surface runoff. The impact of remote recharge causing displacement of near channel groundwater during floods could also be motivated with hydraulic approximations. The results show further that when base flow separation is meant to identify groundwater contributions to stream flow, process based methods (e.g. the rating curve method; Kliner and Knezek, 1974) are more reliable than other simple non-tracer based methods. Also, the recursive filtering method (proposed by Eckhardt, 2005) can be calibrated well using the results of tracer investigation giving good results. Consequently, non-tracer based base flow separation methods that can be validated for some events may provide a powerful tool for groundwater assessment or model calibration/validation in lowland areas.


2013 ◽  
Vol 4 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Adrian H. Gallardo

The Gnangara system is the main source of freshwater for Perth, Western Australia. However, aquifers in the region are under severe stress due to a drying climate, intensive pumping and changes in land use. The aim of this study is to apply the mean rainfall cumulative deviation and Mann-Kendall analyses at 77 monitoring bores to investigate the response of the water table to key recharge components. This information is critical for setting new allocation limits and reviewing current policies in the region. Results show that overall there is a good correspondence between water levels and rainfall fluctuations. Areas of groundwater recharge are highly sensitive to climate change and have been severely affected by reduction in rainfall rates in recent years. Further, removal of pine plantations correlated well with a rise in groundwater levels although the effect seems to be temporary. The impact of pumping is mainly observed in vicinities of public-supply borefields. Elsewhere, water table trends show a relative stabilisation indicating that storage still exceeds the influence of rainfall reduction in areas dominated by through flow or groundwater discharge. The study contributes to update the status of the Gnangara groundwater resource, and provides new insights for the sustainable management of one of the main aquifer systems in Australia.


2009 ◽  
Vol 6 (2) ◽  
pp. 3483-3515 ◽  
Author(s):  
A. L. Gonzales ◽  
J. Nonner ◽  
J. Heijkers ◽  
S. Uhlenbrook

Abstract. Assessment of water resources kept in different storages and moving along different pathways in a catchment is important for its optimal use and protection, and also for the prediction of floods and low flows. Moreover, understanding of the runoff generation processes is essential for assessing the impacts of climate and land use changes on the hydrological response of a catchment. Many methods for base flow separation exist, but hardly one focuses on the specific behaviour of temperate lowland areas. This paper presents the results of a base flow separation study carried out in a lowland area in the Netherlands. In this research, field observations of precipitation, groundwater and surface water levels and discharges, together with tracer analysis are used to understand the runoff generation processes in the catchment. Several tracer and non-tracer based base flow separation methods were applied to the discharge time series, and their results are compared. The results show that groundwater levels react fast to precipitation events in this lowland area with shallow groundwater tables. Moreover, a good correlation was found between groundwater levels and discharges meaning that most of the measured discharge also during floods comes from the groundwater storage. It was determined using tracer hydrological approaches that approximately 90% of the total discharge is groundwater displaced by event water infiltrating in the northern part of the catchment, and only the remaining 10% is surface runoff. The impact of remote recharge causing displacement of near channel groundwater during floods could also be motivated with hydraulic approximations. The results show further that when base flow separation is meant to separate groundwater contributions to stream flow, process based methods (e.g. rating curve method; Kliner and Knezek, 1974) are more reliable than other simple non-tracer based methods. Also, the recursive filtering method (proposed by Eckhardt, 2005) can be calibrated well using the results of tracer investigation, and this resulted in good results. Consequently, simple non-tracer based base flow separation methods that could be validated for some events may provide a powerful tool for groundwater assessment or model calibration/validation in lowland areas.


Author(s):  
Ni Nyoman Adum M

Construction of the Kedunglarangan river flood control system designed to prevent flooding every rainy season in the Bangil sub-district. Kedunglarangan River is a river that flows in two regencies Sidoarjo and Pasuruan which has an area of 282.67 km2 watershed with a river length of 23.7 km. Kedunglarangan river has 4 (four) watershed sub-systems. The scope of this flood prevention work-study is the normalization of the Kedunglarangan River starting from the meeting with the Wrati River downstream up to 7 km. Normalization work is carried out with excavation and river widening to meet flood discharge in accordance with the conditions of the study area. If the river excavation work is done in accordance with the design master will form a basin that causes the creation of a dike. In this condition, it will be a temporary water reservoir where the water velocity is very low. So the work carried out the impact is only temporary. From the results of analysts, it is more efficient to do river widening and embankment raising rather than increasing river depth. River excavation work like that is very risky to create very fast sedimentation. Normalization method with river widening is one way to maintain the river flow downstream and flood water levels


2017 ◽  
Vol 1 (1) ◽  
pp. 43-48
Author(s):  
Shoim Anwar

Sanitation is the one component of environmental health as intentional behavior for cultivate human hygiene to prevent direct contact with dirt and other hazardous waste material, with the hope to maintain and improve human health. This is because, the environment may play a direct cause influential factor in supporting the outbreak of disease and as factors affecting the course of the disease. All feces is a medium as breeding and seed base of infectious diseases. The impact of the disease is most often caused by defecation to the river is the widespread bacterium Escherichia coli, which can cause diarrhea. After that could be dehydrated, and because of the condition of human body’s down then get other diseases. The river is a very important source of water to support human’s life. Dynamism watersheds are influenced by the weather, river flow characteristics and human behaviour of the people who live around the river banks. As a result of effluent from people behaviour causes disturbance to the ecosystem of the river flow. Starting from the non-fulfillment of water quality 3B standarts (colorless, odorless and non-toxic), reduced numbers of fish and water animals, the emergence of a rundown neighborhood until the emergence of health problems and others, therefore, to KKN-PPM in the field of Environmental Sanitation and Supply water in the village Easy in Subdisrtict Prambon, Sidoarjo, the program will be made by "socialization of Great Importance Not Throw water on the River (STOP BABS)".


Sign in / Sign up

Export Citation Format

Share Document