Antioxidative effects of ethyl 2-(3-(benzo[d]thiazol-2-yl)ureido)acetate against amyloid β-induced oxidative cell death via NF-κB, GSK-3β and β-catenin signaling pathways in cultured cortical neurons

2015 ◽  
Vol 49 (4) ◽  
pp. 411-421 ◽  
Author(s):  
E.-A. Kim ◽  
C. H. Cho ◽  
D. W. Kim ◽  
S. Y. Choi ◽  
J.-W. Huh ◽  
...  
2002 ◽  
Vol 949 (1-2) ◽  
pp. 197-201 ◽  
Author(s):  
Tatsurou Yagami ◽  
Keiichi Ueda ◽  
Kenji Asakura ◽  
Satoshi Hata ◽  
Takayuki Kuroda ◽  
...  

Author(s):  
Dina Ivanyuk ◽  
María José Pérez ◽  
Vasiliki Panagiotakopoulou ◽  
Gabriele Di Napoli ◽  
Dario Brunetti ◽  
...  

AbstractMutations in pitrilysin metallopeptidase 1 (PITRM1), a mitochondrial protease involved in mitochondrial precursor processing and degradation, result in a slow-progressive syndrome, characterized by cerebellar ataxia, psychotic episodes and obsessive behavior as well as cognitive decline. To investigate the pathogenetic mechanisms of mitochondrial presequence processing, we employed cortical neurons and cerebral organoids generated from PITRM1 knockout human induced pluripotent stem cells (iPSCs). PITRM1 deficiency strongly induced mitochondrial unfolded protein response (UPRmt) and enhanced mitochondrial clearance in iPSC-derived neurons. Furthermore, we observed increased levels of amyloid precursor protein and amyloid β in PITRM1 knockout neurons. However, neither cell death nor protein aggregates were observed in 2D iPSC-derived cortical neuronal cultures. On the contrary, cerebral organoids generated from PITRM1 knockout iPSCs spontaneously developed over time pathological features of Alzheimer’s disease (AD), including accumulation of protein aggregates, tau pathology, and neuronal cell death. Importantly, we provide evidence for a protective role of UPRmt and mitochondrial clearance against impaired mitochondrial presequence processing and proteotoxic stress. In summary, we propose a novel concept of PITRM1-linked neurological syndrome whereby defects of mitochondrial presequence processing induce an early activation of UPRmt that, in turn, modulates cytosolic quality control pathways. Thus our work supports a mechanistic link between mitochondrial function and common neurodegenerative proteinopathies.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Meghan Morgan-Smith ◽  
Yaohong Wu ◽  
Xiaoqin Zhu ◽  
Julia Pringle ◽  
William D Snider

GSK-3 is an essential mediator of several signaling pathways that regulate cortical development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins.


2000 ◽  
Vol 82 ◽  
pp. 182
Author(s):  
Yutaka Tamura ◽  
Taizo Fukui ◽  
Megumi Kajikawa ◽  
Mikiko Omoto ◽  
Hirohito Shiomi

Sign in / Sign up

Export Citation Format

Share Document