Author(s):  
Sarina Thomas ◽  
Lisa Kausch ◽  
Holger Kunze ◽  
Maxim Privalov ◽  
André Klein ◽  
...  

Abstract Purpose Reduction and osteosynthesis of ankle fractures is a challenging surgical procedure when it comes to the verification of the reduction result. Evaluation is conducted using intra-operative imaging of the injured ankle and depends on the expertise of the surgeon. Studies suggest that intra-individual variance of the ankle bone shape and pose is considerably lower than the inter-individual variance. It stands to reason that the information gain from the healthy contralateral side can help to improve the evaluation. Method In this paper, an assistance system is proposed that provides a side-to-side view of the two ankle joints for visual comparison and instant evaluation using only one 3D C-arm image. Two convolutional neural networks (CNN) are employed to extract the relevant image regions and pose information of each ankle so that they can be aligned with each other. A first U-Net uses a sliding window to predict the location of each ankle. The standard plane estimation is formulated as segmentation problem so that a second U-Net predicts the three viewing planes for alignment. Results Experiments were conducted to assess the accuracy of the individual steps on 218 unilateral ankle datasets as well as the overall performance on 7 bilateral ankle datasets. The experiments on unilateral ankles yield a median position-to-plane error of $$0.73\pm 1.36$$ 0.73 ± 1.36 mm and a median angular error between 2.98$$^\circ $$ ∘ and 3.71$$^\circ $$ ∘ for the plane normals. Conclusion Standard plane estimation via segmentation outperforms direct pose regression. Furthermore, the complete pipeline was evaluated including ankle detection and subsequent plane estimation on bilateral datasets. The proposed pipeline enables a direct contralateral side comparison without additional radiation. This has the potential to ease and improve the intra-operative evaluation for the surgeons in the future and reduce the need for revision surgery.


2021 ◽  
Vol 4 ◽  
pp. 74-80
Author(s):  
M. G. Dorrer ◽  
◽  
A.E. Alekhina ◽  

This paper proposes using the k-means method for the controlled adjustment of the training sample for semantic image segmentation in the artificial vision of a smart refrigerator. To solve this problem, a new two-stage architecture for computer vision is proposed. In the proposed architecture, various sets of settings for optimizing the contrast of images are used to classify pixels according to their belonging to fragments of the studied image. Extensive experimental evaluation shows that the proposed method has critical advantages over existing work. Firstly, the obtained pixel classes can be directly clustered into semantic groups using k-means. Secondly, the method can be used for additional training of artificial intelligence in solving the semantic segmentation problem. The developers propose an approach to the correct choice of the number k of centroids to obtain good quality clusters, which is difficult to determine at a high k value. To overcome the problem of initializing the k-means method, an incremental k-means clustering method is proposed, which improves the quality of clusters to reduce the sum of squared errors. Comprehensive experiments have been carried out compared to the traditional k-means algorithm and its new versions to evaluate the performance of the proposed method on synthetically generated datasets and some real-world datasets.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Lamia Jaafar Belaid

Image analysis by topological gradient approach is a technique based upon the historic application of the topological asymptotic expansion to crack localization problem from boundary measurements. This paper aims at reviewing this methodology through various applications in image processing; in particular image restoration with edge detection, classification and segmentation problems for both grey level and color images is presented in this work. The numerical experiments show the efficiency of the topological gradient approach for modelling and solving different image analysis problems. However, the topological gradient approach presents a major drawback: the identified edges are not connected and then the results obtained particularly for the segmentation problem can be degraded. To overcome this inconvenience, we propose an alternative solution by combining the topological gradient approach with the watershed technique. The numerical results obtained using the coupled method are very interesting.


Author(s):  
Mohammad Sameer Aloun ◽  
Muhammad Suzuri Hitam ◽  
Wan NuralJawahir Hj Wan Yussof ◽  
Abdul Aziz K Abdul Hamid ◽  
Zainuddin Bachok

<p>The original JSEG algorithm has proved to be very useful and robust in variety of image segmentation case studies.However, when it is applied into the underwater coral reef images, the original JSEG algorithm produces over-segementation problem, thus making this algorithm futile in such a situation. In this paper, an approach to reduce the over-segmentation problem occurred in the underwater coral reef image segmentation is presented. The approach works by replacing the color histogram computation in region merge stage of the original JSEG algorithm with the new computation of color and texture features in the similarity measurement. Based on the perceptual observation results of the test images, the proposed modified JSEG algorithm could automatically segment the regions better than the original JSEG algorithm.</p>


2018 ◽  
Author(s):  
Alexey A. Shvets ◽  
Alexander Rakhlin ◽  
Alexandr A. Kalinin ◽  
Vladimir I. Iglovikov

AbstractSemantic segmentation of robotic instruments is an important problem for the robot-assisted surgery. One of the main challenges is to correctly detect an instrument’s position for the tracking and pose estimation in the vicinity of surgical scenes. Accurate pixel-wise instrument segmentation is needed to address this challenge. In this paper we describe our deep learning-based approach for robotic instrument segmentation. Our approach demonstrates an improvement over the state-of-the-art results using several novel deep neural network architectures. It addressed the binary segmentation problem, where every pixel in an image is labeled as an instrument or background from the surgery video feed. In addition, we solve a multi-class segmentation problem, in which we distinguish between different instruments or different parts of an instrument from the background. In this setting, our approach outperforms other methods for automatic instrument segmentation thereby providing state-of-the-art results for these problems. The source code for our solution is made publicly available.


Author(s):  
You Li ◽  
Lin Li ◽  
Dalin Li ◽  
Fan Yang ◽  
Yu Liu

The segmentation of urban scene mobile laser scanning (MLS) data into meaningful street objects is a great challenge due to the scene complexity of street environments, especially in the vicinity of street objects such as poles and trees. This paper proposes a three-stage method for the segmentation of urban MLS data at the object level. The original unorganized point cloud is first voxelized, and all information needed is stored in the voxels. These voxels are then classified as ground and non-ground voxels. In the second stage, the whole scene is segmented into clusters by applying a density-based clustering method based on two key parameters: local density and minimum distance. In the third stage, a merging step and a re-assignment processing step are applied to address the over-segmentation problem and noise points, respectively. We tested the effectiveness of the proposed methods on two urban MLS datasets. The overall accuracies of the segmentation results for the two test sites are 98.3% and 97%, thereby validating the effectiveness of the proposed method.


Author(s):  
Anthony Chaney

The narrative setting for this chapter is the new Oceanic Institute and its sister facility, Sea Life Park, in Waimanalo, Hawaii, in the early 1960s, where Bateson is studying the way dolphins communicate with each other. Among his colleagues – pioneers in dolphin training for public performance and ocean scientists with military contracts – Bateson was beloved but misunderstood. At issue was Bateson’s deep scorn for modern utilitarian science and B.F. Skinner behaviorism. The source of this scorn can be found in Bateson’s background: his youth in British naturalism and as the son of the founder of genetics William Bateson; his 1936 marriage to Margaret Mead, their work in Papau New Guinea and Bali, and their part, along with Ruth Benedict, in Boasian cultural relativism and the culture and personality school of anthropology; Bateson's anthropological morphology, learning theory, and concept of schismogenesis; and his black ops work with the Office of Strategic Services (OSS) in World War II. In the aftermath of the war, the US government opened its doors to the social sciences to aid in its Cold War policies. Bateson’s marriage to Margaret Mead crumbled amidst his refusal to accompany her through these doors.


Author(s):  
Savitha Balakrishnan ◽  
Subashini Parthasarathy ◽  
Krishnaveni Marimuthu

Automated Segmentation of cell nuclei in Pap smear images plays an important role in the cervical cancer cell analysis systems to make a correct diagnosis decision. The aim of this chapter is to detail about the variety of computational intelligence and image processing approaches developed and used for the nuclei segmentation. In additional, the threshold based segmentation problem is treated as an optimization problem with an objective of preserving both the size and volume of the cell nuclei and also to segment the nuclei region from the original microscopic Pap smear image with the help of Particle Swarm Optimization (PSO) and Ant Colony Optimization techniques (ACO). Experimental results are shown, compared in quantitative and qualitative manner as well as the main advantages and limitations of each algorithm are explained.


Sign in / Sign up

Export Citation Format

Share Document