scholarly journals Effects of Combined Application of Cow Manure And Inorganic Nitrogen Fertilizer on Growth, Yield and Nitrogen Uptake of Black Rice

Akta Agrosia ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 55-60
Author(s):  
Marwanto Marwanto ◽  
Nasiroh Nasiroh ◽  
Bambang G. Mucitro ◽  
Merakati Handajaningsih

The beneficial effects of manure on soil properties, growth, and crop productivity have promoted its use for replacing the application of N fertilizer. However, it is not well understood to what extent N fertilizer was able to be substituted by cow manure. Accordingly, this pot experiment aimed to compare the effect of inorganic N fertilizer application alone with that of the combined use of inorganic N fertilizer with cow manure based on the same amount of total N on growth parameters, yield attributes, and nitrogen (N) uptake of black rice. The experiment was conducted under a screen house condition in Agriculture Faculty, Bengkulu University located at 15 meters altitude above sea level during the summer season of 2015. There were six treatments viz. T1 = 100% N from urea + 0% N from cow manure (0.52 g N + 0.00 g cow manure) pot-1, T2 = 80% N from urea  + 20% N from cow manure  (0.42 g N + 9.55 g cow manure) pot-1, T3 = 60% N from urea + 40% N from cow manure (0.31 g N  + 19.10 g cow manure) pot-1, T4 = 40% N from urea + 60% N from cow manure (0.21 g N + 28.65 g cow manure) pot-1, T5 = 20% N from urea + 80% N from cow manure (0.10 g N+ 38.20 g cow manure) pot-1, and T6 = 0% N from urea + 100% N from cow manure (0.00 g N  + 47.75 g cow manure) pot-1. The amount of inorganic N fertilizer in the form of urea and cow manure applied was calculated based on the recommended rate of 115.00 kg ha-1 for N fertilizer and 10.50 ton ha-1 for cow manure. These treatments were arranged in a Completely Randomized Design and repeated three times. The results showed that the treatments significantly (P ?0.005) affected growth parameters as measured by plant height, the number of leaves, fresh shoot weight, fresh root weight, dry shoot weight, dry root weight, yield attributes as determined by the total number of tillers, the total number productive tillers, grain yield per pot, and N uptake. The highest values for all these variables were obtained in the treatment receiving recommended rate of urea only (100% N from urea + 0% N from cow manure as equivalence) and the lowest in the treatment receiving a100% N from cow manure (0% N from urea + 100% N from cow manure). However, combined treatments of cow manure and inorganic N fertilizer such as 80% N from urea  + 20% N from cow manure, 60% N from urea + 40% N from cow manure 40% N from urea + 60% N from cow manure showed a parity statistically with the treatment receiving 100% N from urea only in maintaining the values for all these variables. Overall, the combined use of inorganic N fertilizer (urea) and cow manure as an equivalence promoted growth and yield of black rice by improving N uptake. Keywords: integrated nutrient management, soil chemical property, Nitrogen uptake, combined fertilizer application, black rice

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 667-670 ◽  
Author(s):  
Randy M. Huckaba ◽  
Harold D. Coble ◽  
John W. Van Duyn

Field studies were conducted during 1983 and 1984 to determine the single and interactive effects of trifluralin, soybean thrips, and the sodium salt of acifluorfen on soybean. Increased soybean injury was observed in 1983 when acifluorfen at 0.6 kg ai/ha was applied to soybeans infested with soybean thrips versus plants where soybean thrips were controlled. Soybean injury measured by percent defoliation and visual injury ratings was reduced when thrips were controlled versus soybeans where thrips were not controlled with carbaryl at 0.9 kg ai/ha in 1983. Soybean thrips alone did not reduce soybean seed yield in this study. Acifluorfen reduced soybean photosynthetic rate, shoot weight, root weight, and seed yield. Trifluralin had no effect on soybean growth parameters measured in this study.


1978 ◽  
Vol 58 (2) ◽  
pp. 153-158 ◽  
Author(s):  
P. L. MILLER ◽  
A. F. MacKENZIE

Effects of added N in the form of ammonium nitrate, S-coated urea, solid cow manure, liquid hog manure, and liquid hog manure plus straw on yield and N uptake of corn (Zea mays L.) were determined in 1971. Residual effects of the fertilizers were measured in 1972. Levels of added N were 150 kg/ha, on three soils varying in texture. In 1971, highest yield and N uptake was found using ammonium nitrate, followed by S-coated urea. The manures were not different than the control, and the average values with liquid manure plus straw were generally lowest. Ammonium nitrate treatments had the lowest mineral N levels in the soil profile in September. Thus, ammonium nitrate was considered to have the lowest pollution potential, assuming that fall-accumulated inorganic soil N was a hazard for pollution of groundwater.


2014 ◽  
Vol 12 (1) ◽  
pp. 117-126
Author(s):  
MK Mandal ◽  
M Banerjee ◽  
H Banerjee

A field experiment was carried out during kharif season of 2010 and 2011 at Sriniketan Research Farm, Visva-Bharati, West Bengal, India. The yield attributes and growth parameters were significantly higher in case of sole maize and intercropping treatments with legumes. The maximum total chlorophyll (chlorophyll a + chlorophyll b) was observed on sole maize, which was statistically at par with maize crop under intercropping system. In the middle canopy, highest light interception (%) was observed in maize + groundnut (2:4). The grain yield (2.48 t ha-1) and stover yield (5.07 t ha-1) of maize were significantly higher in sole maize than either of its intercropping systems with legumes. The legume yield was highest in maize + groundnut (1:2) followed by sole groundnut. The maize equivalent yield (7.06 t ha-1) was highest in maize + groundnut (2:4) followed by maize + groundnut (1:2). The highest benefit cost ratio maize + groundnut (1:2) closely followed by maize + soybean (1:2). The total N uptake by sole maize was significantly higher and under intercropping systems, the highest N concentrations in grain and straw, and protein content in grains were obtained in maize + soybean (1:2) and maize + groundnut (2:4) treatment. DOI: http://dx.doi.org/10.3329/sja.v12i1.21118 SAARC J. Agri., 12(1): 117-126 (2014)


1997 ◽  
Vol 128 (4) ◽  
pp. 415-424 ◽  
Author(s):  
C. J. PILBEAM ◽  
A.M. McNEILL ◽  
H. C. HARRIS ◽  
R. S. SWIFT

15N-labelled fertilizer was applied at different rates (0, 30, 60, 90 kg N ha−1) and in different forms (urea or ammonium sulphate) to wheat grown in Syria in three seasons (1991/92, 1992/93 and 1994/95).Recovery of 15N-labelled fertilizer in the above-ground crop at harvest was low (8–22%), with the amount of 15N-labelled fertilizer recovered in the crop increasing as the rate of application increased. Fertilizer application caused a significant increase in the amount of unlabelled soil N in the crop, suggesting that the application of N fertilizer caused a ‘real’ added nitrogen interaction. Recovery of 15N-labelled fertilizer in the crop was unaffected by the form of the fertilizer.On average 31% (14–54%) of the 15N-labelled fertilizer remained in the soil at harvest, mostly in the 0–20 cm layer. At the lowest application rate (30 kg N ha−1) most of the residual fertilizer was as organic N, but at the higher application rates (60 and 90 kg N ha−1), a greater proportion of the 15N-labelled fertilizer was recovered as inorganic N, presumably as the result of top-dressing N in dry conditions in the spring. The amount of 15N-labelled fertilizer remaining in the soil increased as the fertilizer rate increased, but was unaffected by the form of fertilizer applied.Losses of 15N-labelled fertilizer were large (>35%), probably caused by gaseous losses, either through volatilization of N from the calcareous soil, or through denitrification from wet soils rich in organic residues.N fertilization strategies in the West Asia/North Africa (WANA) region should take note of the low recovery of N fertilizer by the crop in the season of application, and the resultant large quantities of residual fertilizer.


1985 ◽  
Vol 25 (1) ◽  
pp. 54 ◽  
Author(s):  
DL Lloyd ◽  
TB Hilder

The effects of a temperate annual legume, barrel medic (Medicago truncatula) cv. Cyprus, and five levels of fertilizer nitrogen (N), from 0 to 400 kg/ha.year, on the dry matter (DM) production and N economy of Makarikari grass (Panicum coloratum var. makarikariense) cv. Pollock, were investigated in a cutting experiment between 1973 and 1979. Each year, N fertilizer on grass alone increased both DM production and N uptake, up to N application rates of 200 and 400 kg/ha.year respectively. The mean annual effect of medic was to increase DM production and N uptake of associated grass each year by 90 and 130% respectively, and of the grass-medic system by 230 and 530%, respectively, for fertilizer rates between 0 and 100 kg N/ha.year. The increased DM production of associated grass occurred in summer and autumn; grass DM production was suppressed in spring, probably by competition with the medic. A trend for the DM yield of grass grown without medic to decline with time was most evident in the treatment without N fertilizer; in the comparable grass-medic pasture, grass DM production was as great in the sixth year as in the first. Medic DM yield varied with winter season rainfall. When the study concluded, the amount of N in the soil (0-10 cm depth) was higher after grassmedic than grass alone, except at the highest level of N fertilizer application. It was estimated that medic had fixed about 71 kg N/ha.year.


2021 ◽  
Author(s):  
ARUN SHANKAR ◽  
O P Choudhary ◽  
Kuldeep Singh

Salinized hydroponic culture experiment with three salinity levels (EC control, 6 and 12 dS/m) was performed to screen salt tolerant mutants of aerobic rice cultivar Nagina 22 and to study the nature of salt tolerance from a total of 432 EMS induced M4 mutants. Plants were harvested 30 days after sowing. Growth parameters viz. root weight, shoot weight, root length, shoot length, Na and K concentrations in shoot and roots were measured. Combined Factor scores of growth parameters was computed by Principle Component Analysis using Minitab software. At EC 12 dS/m 10 mutants out of 432 were able to survive. At moderate salinity, some mutant lines produced higher shoot weight compared to their respective control showing inverse trend and the effectiveness of EMS induced mutation in inducing salinity tolerance to these mutants. At high salinity only10 mutants survived (remained green) up to the time of 30 days harvest. These mutants performed well in terms of overall growth recording 2.1-2.5 times higher factor score and 8-14 times higher shoot weight compared to the N 22 check. One mutant N22-L-1010 almost completely excluded Na at xylem parenchyma level. Two other mutants N22-L-1013 and N22-L-806 maintained Na exclusion compared to the N22 check. N22 check and mutant N22-L-1009 maintained similar degree of Na exclusion though the N22 check died because it cannot maintain adequate K in shoot. We conclude that EMS has induced salinity tolerance in some mutants. The study can be advanced further to characterize the putative mutants through molecular genetics approaches.


2021 ◽  
Vol 58 (04) ◽  
pp. 1291-1299
Author(s):  
Muhammad Usman Afzal

Citrus is known as a major fruit due to its high nutritional value and adaptability in tropical and sub-tropical regions. Among diseases, citrus dieback is one of the most threatening diseases in which overall plant growth is reduced. Major causes are Colletotrichum gloeosporioides and citrus nematode (Tylenchulus semipenetrans) with 15-35% losses all over the world. Plant material was established adopting sanitary measures in earthen pots (12-inch diameter). Fresh culture of C. gloeosporioides and T. semipenetrans was prepared for the inoculation by following the standard procedures. In the first set, rootstocks were inoculated with 200mL of water having spore suspension of C. gloeosporioides while in in the second set, inoculation of T. semipenetrans was done by using 45 mL of water suspension having 2000 freshly hatched juveniles per pot, while at the rate of 1 × 107 spores/mL per plant. In the third set, the interaction of C. gloeosporioides and T. semipenetrans was studied by inoculating selected citrus rootstocks by both pathogens. After four months of inoculation, data were recorded on plant disease index (PDI) along with plant growth parameters (root weight, shoot weight, shoot weight, shoot length and number of leaves). Trifoliate orange and cox mandarin hybrid showed resistance against the development of T. semipenetrans while rough lemon, C-35 Citrange and sour orange were found susceptible. There was a significant difference in plant growth parameters between inoculated and healthy plants. Root weight and shoot weight decreased by 8.98g and 11.53g, while root length and shoot length decreased by 7.29cm and 13.5cm respectively as compared to control treatments in most susceptible rootstocks. Per cent Branch Infection (PBI) and per cent Disease Index (PDI) were maximum (71.52, 37) per cent on rough lemon respectively. Results regarding combined inoculation of C. gloeosporioides and T. semipenetrans showed that there was a significant difference in plant growth parameters between inoculated and healthy plants. In rough lemon, Root weight and shoot weight decreased by 13.86 and 20.57g respectively in diseased and healthy plants. Root length and shoot length decreased by 8.37 and 20.04cm respectively as compared to control treatments in most susceptible rootstocks. Overall results depicted that inoculation of both pathogens reduced plant growth more severely as compared to their individual application.


Sign in / Sign up

Export Citation Format

Share Document