scholarly journals Prediction of immediate and late renal functioning post-parathyroidectomy for primary hyperparathyroidism : Amalgamation of Ensemble approach and Automated Machine Learning

2021 ◽  
Author(s):  
Saiqa Zehra ◽  
Hashir Fahim Khawaja ◽  
Ali Haider Bangash

Prognostication is pursued with risk modelling for acute kidney injury postoperatively in such patients who have undergone parathyroidectomy for primary hyperparathyroidism. Novel composite variables notably contributing to close-to-perfect predictive competence of the proposed suite of prognosticative models are also unveiled.

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 782-P
Author(s):  
LANTING YANG ◽  
NICO GABRIEL ◽  
INMACULADA HERNANDEZ ◽  
ALMUT G. WINTERSTEIN ◽  
STEPHEN KIMMEL ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Enrico Favaro ◽  
Roberta Lazzarin ◽  
Daniela Cremasco ◽  
Erika Pierobon ◽  
Marta Guizzo ◽  
...  

Abstract Background and Aims The modern development of the black box approach in clinical nephrology is inconceivable without a logical theory of renal function and a comprehension of anatomical architecture of the kidney, in health and disease: this is the undisputed contribution offered by Malpighi, Oliver and Trueta starting from the seventeenth century. The machine learning model for the prediction of acute kidney injury, progression of renal failure and tubulointerstitial nephritis is a good example of how different knowledge about kidney are an indispensable tool for the interpretation of model itself. Method Historical data were collected from literature, textbooks, encyclopedias, scientific periodicals and laboratory experimental data concerning these three authors. Results The Italian Marcello Malpighi (1628-1694), born in Crevalcore near Bologna, was Professor of anatomy at Bologna, Pisa and Messina. The historic description of the pulmonary capillaries was made in his second epistle to Borelli published in 1661 and intitled De pulmonibus, by means of the frog as “the microscope of nature” (Fig. 1). It is the first description of capillaries in any circulation. William Harvey in De motu cordis in 1628 (year of publication the same of date of birth of Italian anatomist!) could not see the capillary vessels. This thriumphant discovery will serve for the next reconnaissance of characteristic renal rete mirabile.in the corpuscle of Malpighi, lying within the capsule of Bowman. Jean Redman Oliver (1889-1976), a pathologist born and raised in Northern California, was able to bridge the gap between the nephron and collecting system through meticulous dissections, hand drawn illustrations and experiments which underpin our current understanding of renal anatomy and physiology. In the skillful lecture “When is the kidney not a kidney?” (1949) Oliver summarizes his far-sighted vision on renal physiology and disease in the following sentence: the Kidney in health, if you will, but the Nephrons in disease. Because, the “nephron” like the “kidney” is an abstraction that must be qualified in terms of its various parts, its cellular components and the molecular mechanisms involved in each discrete activity (Fig. 2). The Catalan surgeon Josep Trueta I Raspall (1897-1977) was born in the Poblenou neighborhood of Barcelona. His impact of pioneering and visionary contribution to the changes in renal circulation for the pathogenesis of acute kidney injury was pivotal for history of renal physiology. “The kidney has two potential circulatory circulations. Blood may pass either almost exclusively through one or other of two pathways, or to a varying degree through both”. (Studies of the Renal Circulation, published in 1947). Now this diversion of blood from cortex to the less resistant medullary circulation is known with the eponym Trueta shunt. Conclusion The black box approach to the kidney diseases should be considered by practitioners as a further tool to help to inform model update in many clinical setting. The number of machine learning clinical prediction models being published is rising, as new fields of application are being explored in medicine (Fig. 3). A challenge in the clinical nephrology is to explore the “kidney machine” during each therapeutic diagnostic procedure. Always, the intriguing relationship between the set of nephrological syndromes and kidney diseases cannot disregard the precious notions the specific organization of kidney microcirculation, fruit of many scientific contributions of the work by Malpighi, Oliver and Trueta (Fig. 3).


2019 ◽  
Vol 85 (7) ◽  
pp. 725-729 ◽  
Author(s):  
Joshua Parreco ◽  
Hahn Soe-Lin ◽  
Jonathan J. Parks ◽  
Saskya Byerly ◽  
Matthew Chatoor ◽  
...  

Prior studies have used vital signs and laboratory measurements with conventional modeling techniques to predict acute kidney injury (AKI). The purpose of this study was to use the trend in vital signs and laboratory measurements with machine learning algorithms for predicting AKI in ICU patients. The eICU Collaborative Research Database was queried for five consecutive days of laboratory measurements per patient. Patients with AKI were identified and trends in vital signs and laboratory values were determined by calculating the slope of the least-squares-fit linear equation using three days for each value. Different machine learning classifiers (gradient boosted trees [GBT], logistic regression, and deep learning) were trained to predict AKI using the laboratory values, vital signs, and slopes. There were 151,098 ICU stays identified and the rate of AKI was 5.6 per cent. The best performing algorithm was GBT with an AUC of 0.834 ± 0.006 and an F-measure of 42.96 per cent ± 1.26 per cent. Logistic regression performed with an AUC of 0.827 ± 0.004 and an F-measure of 28.29 per cent ± 1.01 per cent. Deep learning performed with an AUC of 0.817 ± 0.005 and an F-measure of 42.89 per cent ± 0.91 per cent. The most important variable for GBT was the slope of the minimum creatinine (30.32%). This study identifies the best performing machine learning algorithms for predicting AKI using trends in laboratory values in ICU patients. Early identification of these patients using readily available data indicates that incorporating machine learning predictive models into electronic medical record systems is an inevitable requisite for improving patient outcomes.


2018 ◽  
Vol 7 (11) ◽  
pp. 428 ◽  
Author(s):  
Hyung-Chul Lee ◽  
Soo Yoon ◽  
Seong-Mi Yang ◽  
Won Kim ◽  
Ho-Geol Ryu ◽  
...  

Acute kidney injury (AKI) after liver transplantation has been reported to be associated with increased mortality. Recently, machine learning approaches were reported to have better predictive ability than the classic statistical analysis. We compared the performance of machine learning approaches with that of logistic regression analysis to predict AKI after liver transplantation. We reviewed 1211 patients and preoperative and intraoperative anesthesia and surgery-related variables were obtained. The primary outcome was postoperative AKI defined by acute kidney injury network criteria. The following machine learning techniques were used: decision tree, random forest, gradient boosting machine, support vector machine, naïve Bayes, multilayer perceptron, and deep belief networks. These techniques were compared with logistic regression analysis regarding the area under the receiver-operating characteristic curve (AUROC). AKI developed in 365 patients (30.1%). The performance in terms of AUROC was best in gradient boosting machine among all analyses to predict AKI of all stages (0.90, 95% confidence interval [CI] 0.86–0.93) or stage 2 or 3 AKI. The AUROC of logistic regression analysis was 0.61 (95% CI 0.56–0.66). Decision tree and random forest techniques showed moderate performance (AUROC 0.86 and 0.85, respectively). The AUROC of support the vector machine, naïve Bayes, neural network, and deep belief network was smaller than that of the other models. In our comparison of seven machine learning approaches with logistic regression analysis, the gradient boosting machine showed the best performance with the highest AUROC. An internet-based risk estimator was developed based on our model of gradient boosting. However, prospective studies are required to validate our results.


2017 ◽  
Author(s):  
Hamid Mohamadlou ◽  
Anna Lynn-Palevsky ◽  
Christopher Barton ◽  
Uli Chettipally ◽  
Lisa Shieh ◽  
...  

AbstractBackgroundA major problem in treating acute kidney injury (AKI) is that clinical criteria for recognition are markers of established kidney damage or impaired function; treatment before such damage manifests is desirable. Clinicians could intervene during what may be a crucial stage for preventing permanent kidney injury if patients with incipient AKI and those at high risk of developing AKI could be identified.MethodsWe used a machine learning technique, boosted ensembles of decision trees, to train an AKI prediction tool on retrospective data from inpatients at Stanford Medical Center and intensive care unit patients at Beth Israel Deaconess Medical Center. We tested the algorithm’s ability to detect AKI at onset, and to predict AKI 12, 24, 48, and 72 hours before onset, and compared its 3-fold cross-validation performance to the SOFA score for AKI identification in terms of Area Under the Receiver Operating Characteristic (AUROC).ResultsThe prediction algorithm achieves AUROC of 0.872 (95% CI 0.867, 0.878) for AKI onset detection, superior to the SOFA score AUROC of 0.815 (P < 0.01). At 72 hours before onset, the algorithm achieves AUROC of 0.728 (95% CI 0.719, 0.737), compared to the SOFA score AUROC of 0.720 (P < 0.01).ConclusionsThe results of these experiments suggest that a machine-learning-based AKI prediction tool may offer important prognostic capabilities for determining which patients are likely to suffer AKI, potentially allowing clinicians to intervene before kidney damage manifests.


Sign in / Sign up

Export Citation Format

Share Document