scholarly journals Tibial bone loads during basketball maneuvers

2021 ◽  
Author(s):  
Chenxi Yan ◽  
Stuart Warden ◽  
Mariana E Kersh

The tibia is a common site for stress fractures, which are believed to develop from microdamage accumulation to repetitive sub-yield strains. There is a need to understand how the tibia is loaded in vivo to understand how stress fractures develop and design exercises to build a more robust bone. Here, we use subject-specific, muscle-driven, finite element simulations of 11 basketball players to calculate strain and strain rate distributions at the midshaft and distal tibia during six activities: walking, sprinting, lateral cut, jumping after landing, changing direction from forward-to-backward sprinting, and changing direction while side shuffling. Maximum compressive strains were at least double maximum tensile microstrains (mu) during the stance phase of all activities. Sprinting and lateral cut had the highest compressive (-2773 +/- 934 mu) and -2266 +/-815 mu, respectively) and tensile (999 +/- 381 mu and 907 +/- 261 mu, respectively) strains. These activities also had the highest strains rates (peak compressive strain rate = 46237 +/- 38217 mu/s and 41510 +/- 17245 mu/s, respectively). Compressive strains principally occurred in the posterior tibia for all activities; however, tensile strain location varied. In particular, activities involving a change in direction increased tensile loads in the anterior tibia. These observations may guide preventative and management strategies for tibial stress fractures. In terms of prevention, the strain distributions suggest individuals should perform activities involving changes in direction during growth to adapt different parts of the tibia and develop a more fatigue resistant bone. In terms of management, the greater strain and strain rates during sprinting than jumping suggests jumping activities may be commenced earlier than full pace running. The greater anterior tensile strains during changes in direction suggest introduction of these types of activities should be delayed during recovery from an anterior tibial stress fractures, which have a high-risk of healing complications.

2021 ◽  
Author(s):  
Chenxi Yan ◽  
Stuart Warden ◽  
Mariana E Kersh

The tibia is a common site for stress fractures, which are believed to develop from microdamage accumulation to repetitive sub-yield strains. There is a need to understand how the tibia is loaded in vivo to understand how stress fractures develop and design exercises to build a more robust bone. Here, we use subject-specific, muscle-driven, finite element simulations of 11 basketball players to calculate strain and strain rate distributions at the midshaft and distal tibia during six activities: walking, sprinting, lateral cut, jumping after landing, changing direction from forward-to-backward sprinting, and changing direction while side shuffling. Maximum compressive strains were at least double maximum tensile microstrains (mu) during the stance phase of all activities. Sprinting and lateral cut had the highest compressive (-2773 +/- 934 mu and -2266 +/- 815 mu, respectively) and tensile (999 +/- 381 mu and 907 +/- 261 mu, respectively) strains. These activities also had the highest strains rates (peak compressive strain rate = 46237 +/- 38217 mu/s and 41510 +/- 17245 mu/s, respectively). Compressive strains principally occurred in the posterior tibia for all activities; however, tensile strain location varied. In particular, activities involving a change in direction increased tensile loads in the anterior tibia. These observations may guide preventative and management strategies for tibial stress fractures. In terms of prevention, the strain distributions suggest individuals should perform activities involving changes in direction during growth to adapt different parts of the tibia and develop a more fatigue resistant bone. In terms of management, the greater strain and strain rates during sprinting than jumping suggests jumping activities may be commenced earlier than full pace running. The greater anterior tensile strains during changes in direction suggest introduction of these types of activities should be delayed during recovery from an anterior tibial stress fractures, which have a high-risk of healing complications.


2019 ◽  
Vol 19 (3) ◽  
pp. 1109-1130 ◽  
Author(s):  
Marzieh Hajiaghamemar ◽  
Taotao Wu ◽  
Matthew B. Panzer ◽  
Susan S. Margulies

AbstractWith the growing rate of traumatic brain injury (TBI), there is an increasing interest in validated tools to predict and prevent brain injuries. Finite element models (FEM) are valuable tools to estimate tissue responses, predict probability of TBI, and guide the development of safety equipment. In this study, we developed and validated an anisotropic pig brain multi-scale FEM by explicitly embedding the axonal tract structures and utilized the model to simulate experimental TBI in piglets undergoing dynamic head rotations. Binary logistic regression, survival analysis with Weibull distribution, and receiver operating characteristic curve analysis, coupled with repeated k-fold cross-validation technique, were used to examine 12 FEM-derived metrics related to axonal/brain tissue strain and strain rate for predicting the presence or absence of traumatic axonal injury (TAI). All 12 metrics performed well in predicting of TAI with prediction accuracy rate of 73–90%. The axonal-based metrics outperformed their rival brain tissue-based metrics in predicting TAI. The best predictors of TAI were maximum axonal strain times strain rate (MASxSR) and its corresponding optimal fraction-based metric (AF-MASxSR7.5) that represents the fraction of axonal fibers exceeding MASxSR of 7.5 s−1. The thresholds compare favorably with tissue tolerances found in in–vitro/in–vivo measurements in the literature. In addition, the damaged volume fractions (DVF) predicted using the axonal-based metrics, especially MASxSR (DVF = 0.05–4.5%), were closer to the actual DVF obtained from histopathology (AIV = 0.02–1.65%) in comparison with the DVF predicted using the brain-related metrics (DVF = 0.11–41.2%). The methods and the results from this study can be used to improve model prediction of TBI in humans.


1998 ◽  
Vol 19 (7) ◽  
pp. 479-484 ◽  
Author(s):  
Ingrid Ekenman ◽  
Kjartan Halvorsen ◽  
Pär Westblad ◽  
Li Fellãnder-Tsai ◽  
Christer Rolf

Local bone deformation was registered at two predominant injury sites for tibial stress fractures in a healthy female volunteer. Two instrumented strain gauge staples were inserted under local anesthesia to the anterior middiaphysis (AM) and to the posteromedial part of the distal tibia (PD). Calibration and reliability of the instrumented staple system have previously been demonstrated in vitro. Concomitant ground reaction forces were registered with a Kistler force plate. Studying peak values, it was shown that during a voluntary 30-cm forward jump, PD deformation was greater during forefoot landing (2700–4200 microstrain) than during a heel strike landing (1200–1900 microstrain) and also compared with the concomitant AM deformation under both above testing conditions (1300–1900 microstrain). The stance phase during walking resulted in PD deformation of 950 microstrain, whereas the concomitant AM deformation was 334 microstrain. The greatest AM deformation (mean, 2128 microstrain) was registered during ground contact after a voluntary vertical drop from a height of 45 cm, concomitant with a PD deformation of 436 microstrain. These data are the first to show different local deformations at various sites of the tibia in vivo. The PD deformation was larger than previously noted from other parts of the tibia, whereas the middiaphysis data are consistent with other reports. The results may support the clinical assumption of different etiologies for stress fractures at these predominant sites.


Author(s):  
C. Milgrom ◽  
A. Finestone ◽  
N. Benjoya ◽  
A. Simkin ◽  
I. Ekenman ◽  
...  

Orthopedics ◽  
2014 ◽  
Vol 37 (4) ◽  
pp. 217-278 ◽  
Author(s):  
Richard Burke ◽  
Andrew L. Chiang ◽  
Laurie M. Lomasney ◽  
Terrence C. Demos ◽  
Karen Wu

Author(s):  
M. F. Stevens ◽  
P. S. Follansbee

The strain rate sensitivity of a variety of materials is known to increase rapidly at strain rates exceeding ∼103 sec-1. This transition has most often in the past been attributed to a transition from thermally activated guide to viscous drag control. An important condition for imposition of dislocation drag effects is that the applied stress, σ, must be on the order of or greater than the threshold stress, which is the flow stress at OK. From Fig. 1, it can be seen for OFE Cu that the ratio of the applied stress to threshold stress remains constant even at strain rates as high as 104 sec-1 suggesting that there is not a mechanism transition but that the intrinsic strength is increasing, since the threshold strength is a mechanical measure of intrinsic strength. These measurements were made at constant strain levels of 0.2, wnich is not a guarantee of constant microstructure. The increase in threshold stress at higher strain rates is a strong indication that the microstructural evolution is a function of strain rate and that the dependence becomes stronger at high strain rates.


2021 ◽  
Vol 10 (5) ◽  
pp. 1123
Author(s):  
Afrodite Zendeli ◽  
Minh Bui ◽  
Lukas Fischer ◽  
Ali Ghasem-Zadeh ◽  
Wolfgang Schima ◽  
...  

To determine whether stress fractures are associated with bone microstructural deterioration we quantified distal radial and the unfractured distal tibia using high resolution peripheral quantitative computed tomography in 26 cases with lower limb stress fractures (15 males, 11 females; mean age 37.1 ± 3.1 years) and 62 age-matched healthy controls (24 males, 38 females; mean age 35.0 ± 1.6 years). Relative to controls, in men, at the distal radius, cases had smaller cortical cross sectional area (CSA) (p = 0.012), higher porosity of the outer transitional zone (OTZ) (p = 0.006), inner transitional zone (ITZ) (p = 0.043) and the compact-appearing cortex (CC) (p = 0.023) while trabecular vBMD was lower (p = 0.002). At the distal tibia, cases also had a smaller cortical CSA (p = 0.008). Cortical porosity was not higher, but trabecular vBMD was lower (p = 0.001). Relative to controls, in women, cases had higher distal radial porosity of the OTZ (p = 0.028), ITZ (p = 0.030) not CC (p = 0.054). Trabecular vBMD was lower (p = 0.041). Distal tibial porosity was higher in the OTZ (p = 0.035), ITZ (p = 0.009), not CC. Stress fractures are associated with compromised cortical and trabecular microstructure.


Sign in / Sign up

Export Citation Format

Share Document