scholarly journals Lampiran 4A Paper Degradasi paraquat (1,1'-dimetil-4,4'bipyridilium) dalam Lingkungan Tanah Desa Oematanunu Kecamatan Kupang Barat

2021 ◽  
Author(s):  
Philiphi de Rozari

In thus research, the kinetics of paraquat degradation in a medium of Oematnunu soil filtrate medium at two conditions, i. e. light condition and dark condition (on direct sunshine for 8 hours per day) has been studied. to study the effect of sunshine in paraquat degradation, it gas been carried out a paraquat degradation in medium of sterilized aquadest, sterilized well water, sterilized Oematnunu soil filtrate, medium without sterilization like, medium aquadest, medium well water and medium Oematnunu soil filtrate without sterilization. on certain time interval, the rest of paraquat was determined by UV-Vis spectrophotometry after being reduced with sodium dithionite at a maximum wavelength of 604 nm. the results indicated that sunshine increased the rate of paraquat degradation. paraquat degradation studied medium followed kinetics of the first order. the rate constant of paraquat in Oematnunu soil filtrate medium (0,06998 0,00336 /day). higher than that in medium without sterilization and anothers sterilization medium, as well as in well water medium (0,06217 0,00317 /day), aquadest medium (0,03458 0,00252 /day), for anothers sterilized medium as Oematnunu soil filtrate medium (0,06086 0,00285 /day), sterilized well water medium (0,04720 0,00182 /day) and sterilized aquadest medium (0,03472 0,00251 /day).

1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


1969 ◽  
Vol 113 (4) ◽  
pp. 611-615 ◽  
Author(s):  
J. Leichter ◽  
M. A. Joslyn

Results are presented on the rate of thiamin cleavage by sulphite in aqueous solutions as affected by temperature (20–70°), pH(2·5–7·0), and variation of the concentration of either thiamin (1–20μm) or sulphite (10–5000μm as sulphur dioxide). Plots of the logarithm of percentage of residual thiamin against time were found to be linear and cleavage thus was first-order with respect to thiamin. At pH5 the rate was also found to be proportional to the sulphite concentration. In the pH region 2·5–7·0 at 25° the rate constant was 50m−1hr.−1 at pH5·5–6·0, and decreased at higher or lower pH values. The rate of reaction increased between 20° and 70°, indicating a heat of activation of 13·6kcal./mole.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


2010 ◽  
Vol 2 (2) ◽  
pp. 107-112
Author(s):  
Nuryono Nuryono ◽  
Narsito Narsito

In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl) and sulfuric acid (H2SO4) on kinetics of Cd(II) adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size) with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II) in aqueous solution with various concentrations. The Cd(II) adsorbed was determined by analyzing the rest of Cd(II) in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II) occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I) followed by reaction of reversible first order (step II). Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated) did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol).     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


1971 ◽  
Vol 122 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini ◽  
Maurizio Brunori

1. The equilibrium and kinetics of cyanide binding to ferroperoxidase were investigated. At pH9.1 the equilibrium and kinetic measurements agree closely and disclose a single process with an affinity constant of 1.1×103m@!-1 and combination and dissociation velocity constants of 29m-1·s-1 and 2.5×10-2s-1 respectively. 2. At pH values below 8 the affinity constant falls until at pH6.0 the ferroperoxidase·cyanide complex is no longer formed. This is shown to be associated with the formation of ferriperoxidase·cyanide complex in the mixture even in the presence of excess of sodium dithionite. 3. Rapid-pH-jump experiments show a fast pseudo-first-order interconversion between ferroperoxidase·cyanide complex at pH9.1 and ferriperoxidase·cyanide complex at pH6.0. 4. The kinetics of binding of cyanide to dithionite-reduced peroxidase at pH6.0 are complicated and radically different from those observed at pH9.1. 5. Above pH8 the change of affinity constant with pH is consistent with the undissociated species, HCN, being bound by the ferroperoxidase. The enthalpy for this process measured both by equilibrium and kinetic methods is about -8kcal/mol. 6. The binding of cyanide to reconstituted peroxidases, proto, meso and deutero, was investigated. 7. The results are discussed in relation to known data on cyanide binding to other haemoproteins.


1969 ◽  
Vol 114 (4) ◽  
pp. 719-724 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini

1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide–protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide–haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5×108m−1sec.−1 and 103sec.−1 at pH9·1 and 20°. The complex is converted into carbon monoxide–haemoprotein in a first-order process with a rate constant of 235sec.−1 for peroxidase and 364sec.−1 for myoglobin at pH9·1 and 20°. 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide–haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.


1996 ◽  
Vol 74 (4) ◽  
pp. 625-629 ◽  
Author(s):  
Neeta Jalani ◽  
Seema Kothari ◽  
Kalyan K. Banerji

The kinetics of addition of a number of ortho-, meta-, and para-substituted benzylamines to β-nitrostyrene (NS) in acetonitrile have been studied. The reaction is first order with respect to NS. The order with respect to the amine is higher than one. It has been shown that the reaction follows two mechanistic pathways, uncatalyzed and catalyzed by the amine. The Arrhenius activation energy for the catalyzed path is negative, indicating the presence of a pre-equilibrium (k1, k−1) leading to the formation of a zwitterion. The values of the rate constant, k1, for the nucleophilic attack have been determined for 28 benzylamines. The rate constant k1 was subjected to correlation analysis using Charton's LDR and LDRS equations. The polar regression coefficients are negative, indicating the formation of a cationic species in the transition state. The reaction is subject to steric hindrance by ortho substituents. Key words: nucleophilic addition, benzylamines, correlation analysis, kinetics, alkene.


Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 549-554
Author(s):  
J Pieters ◽  
T Lindhout ◽  
G Willems

Generation and inhibition of activated factor IXa was studied in factor XIa-activated plasma containing 4 mmol/L free calcium ions and 20 mumol/L phospholipid (25 mol% phosphatidylserine/75 mol% phosphatidylcholine). Interference of other (activated) clotting factors with the factor IXa activity measurements could be avoided by using a highly specific and sensitive bioassay. Factor IXa generation curves were analyzed according to a model that assumed Michaelis-Menten kinetics of factor XIa-catalyzed factor IXa formation and pseudo first order kinetics of inhibition of factor XIa and factor IXa. In the absence of heparin, factor IXa activity in plasma reached final levels that were found to increase with increasing amounts of factor XIa used to activate the plasma. When the model was fitted to this set of factor IXa generation curves, the analysis yielded a rate constant of inhibition of factor XIa of 0.7 +/- 0.1 min-1 and a kcat/Km ratio of 0.29 +/- 0.01 (nmol/L)-1 min-1. No neutralization of factor IXa activity was observed (the estimated rate constant of inhibition of factor IXa was 0). Thus, in the absence of heparin, the final level of factor IXa in plasma is only dependent on the initial factor XIa concentration. While neutralization of in situ generated factor IXa in normal plasma was negligible, unfractionated heparin dramatically enhanced the rate of inactivation of factor IXa (apparent second order rate constant of inhibition of 5.2 min-1/per microgram heparin/mL). The synthetic pentasaccharide heparin, the smallest heparin chain capable of binding antithrombin III, stimulated the inhibition of in situ generated factor IXa, but sevenfold less than unfractionated heparin (k = 0.76 min-1 per microgram pentasaccharide/mL). We found that free calcium ions were absolutely required to observe an unfractionated heparin and pentasaccharide-stimulated neutralization of factor IXa activity. Factor XIa inhibition (psuedo first order rate constant of 0.7 min-1) was not affected by unfractionated heparin or pentasaccharide in the range of heparin concentrations studied.


2015 ◽  
Vol 8 (2) ◽  
pp. 116
Author(s):  
Fitria Rahmawati ◽  
Wanodya Anggit Mawasthi ◽  
Patiha

Research on the kinetics of electrode reaction during copper electro-deposition on the surface of TiO2/graphite has been conducted. The aims of this research are to determine the ratio of anodic reaction rate to cathodic reaction rate , the ratio of anodic rate constant to cathodic rate constant , the equilibrium constant when the reaction reach equilibrium condition and to study the polarization in the electro-deposition reaction. Copper was deposited electrochemically from CuSO4 solution at various concentration i.e. 0.1 M; 0.2 M; 0.3 M; 0.4 M; 0.5 M. In every 5 minutes during electro-deposition process, the pH changes in anode cell was recorded and the change of Cu2+ concentration was also analyzed by spectrophotometric method. The result shows that the reaction order of Cu2+ reduction is first order and the oxidation of H2O in anodic cell is zero order. The ratio of anodic rate constant to cathodic rate constant, is 4.589´10-3 ± 0.071´10‑3. It indicates that the reaction rate  in cathode is larger than the reaction rate in anode and it allowed polarization.  The electrochemical cell reached equilibrium after 25 minutes with the equilibrium constant is 8.188´10-10 ± 1.628´10-10.


Sign in / Sign up

Export Citation Format

Share Document