Object-Oriented Generative Adversarial Networks
(Performed in 2018 as a class project) Deep learning is a field that has been mainly driven by connectionist models like neural networks, characterized by layered processing of distributed, sub-symbolic and statistical features. However, human high-level thoughts appear to be highly symbolic, focusing on objects and relations.To bridge the gap between perception and symbols, a series of models on "Object Oriented Deep Learning" was proposed [9,8,7]. In this project we further explore this class of models. We implement a generative version of OODL that can generate images instead of performing object recognition, in a similar way to Generative Adversarial Networks (GANs). In comparison to conventional “feature-oriented” deep learning, OODL naturally handles properties of objects by incorporating them as fields. It offers exact equivariance [8] to translation, rotation and scaling. When implementing it as a generative model, one should be able to precisely control such geometric properties of the generated objects.