The nanomedicine system has successfully inhibited tumor neovascularization using gene silencing, chemotherapy, photothermal therapy, and other therapies

2021 ◽  
Author(s):  
Moataz Dowaidar

Customized nanomedicines can be used in a variety of ways, including angiogenesis suppression, vascular disruption, and vascular infarction. In the angiogenesis suppression approach, VEGF, VEGFR, mTOR, EGFR, bFGF, ROS, and other components have become promising therapeutic targets. The nanomedicine system has successfully inhibited tumor neovascularization using gene silencing, chemotherapy, photothermal therapy, and other therapies. In the vascular disruption approach, VDAs supplied by nanomaterials were bonded with the bonding sites of CA4, COL, PTX, and other medications on microtubules to promote rapid disintegration of tumor vascular wall cells. Combining many medicines increased the tumor treatment outcome even more. For example, disruption of tumor blood arteries caused by nanoparticle-mediated physical methods combined with chemotherapy resulted in effective treatment in a large volume tumor model. The vascular infarction methodology uses a variety of carriers, including nanoparticles, DNA nanorobots, platelet membranes, and others, to carry thrombin, tTF, and other drugs to generate local thrombosis and provide safe and effective tumor treatment.

2021 ◽  
Author(s):  
Haiyan Wu ◽  
Pengpeng Jia ◽  
Yu Zou ◽  
Jiang Jiang

Photothermal therapy, assisted by local heat generation using photothermal nanoparticles (NPs), is an emerging strategy to treat tumors noninvasively. To improve treatment outcome and to alleviate potential side effect on...


Author(s):  
Chong Ma ◽  
Tao Zhang ◽  
Zhigang Xie

In the past ten years, photothermal therapy (PTT) has attracted widespread attention in tumor treatment due to its non-invasiveness and little side effects. PTT utilize the heat produced by photothermal...


2020 ◽  
Vol 2 (10) ◽  
pp. 4188-4194
Author(s):  
Qihang Wu ◽  
Jinfeng Han ◽  
Chaonan Li ◽  
Tingting Sun ◽  
Zhigang Xie

2020 ◽  
Vol 185 ◽  
pp. 04003
Author(s):  
Bo pang ◽  
Lihong Jin ◽  
Liying Wang

In this paper, the surface of molybdenum disulfide nanosheets synthesized by hydrothermal method was modified with bovine serum albumin (BSA) and nucleic acid aptamers in order to construct a photothermal system with high target recognition, stable size, good biocompatibility and low toxicity Nano material molybdenum disulfide; Under 808 nm laser irradiation, suitable functionalized molybdenum disulfide nanosheets can produce singlet oxygen at an effective concentration for photodynamic therapy, and at the same time, photothermal therapy can also be used to achieve synergistic therapy and the therapeutic effect is more excellent. This shows that such functionalized molybdenum disulfide nanosheets have excellent therapeutic effect and great potential in tumor treatment.


2017 ◽  
Vol 9 (19) ◽  
pp. 15995-16005 ◽  
Author(s):  
Lingdan Kong ◽  
Lingxi Xing ◽  
Benqing Zhou ◽  
Lianfang Du ◽  
Xiangyang Shi

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shanshan Liu ◽  
Jiawen He ◽  
Ruixiang Song ◽  
Mengmeng Zhang ◽  
Lianghao Huang ◽  
...  

Abstract Treatment of pancreatic cancer is faced with great difficulties and challenges due to high lethality and metastasis. Synergism of targeted therapy and immunotherapy has been considered as ideal strategy to both eliminate primary tumors and control metastases. For the treatment of advanced pancreatic cancer, we demonstrated a local photothermal therapy (PTT) following administration of monoclonal antibody of programmed death ligand 1 (αPD-L1). Fe2P nanorods were employed as a Fenton agent and photothermal agent, which modified with DSPE-PEG2000-Mal for improved biocompatibility and Mal mediated-antigen presentation. Under a low dose laser irradiation at 980 nm, Fe2P-PEG-Mal nanorods (NRs) mediated PTT could induce immunogenic tumor cell death that can cause dendritic cells (DCs) infiltration and maturation. In a bilateral pancreatic tumor model, the local treatment of NRs-PTT on primary tumor could cause the increased infiltration of cytotoxic T lymphocytes (CTLs) and decreased residential of M2 macrophages in untreated distal tumors. Furthermore, subsequently intervened αPD-L1 could enhance cell death triggered by CTLs in distal tumors through reversing immunosuppression. An orthotopic pancreatic tumor model was used to further confirm the therapeutic outcome. Finally, the combination of NRs based PTT and αPD-L1 based immunotherapy was able to significantly eliminate orthotopic pancreatic tumors and reduce mesentery metastases. Thus, the strategy may provide a more effective treatment for pancreatic cancer.


Nanoscale ◽  
2018 ◽  
Vol 10 (48) ◽  
pp. 22657-22672 ◽  
Author(s):  
Jing-Jing Hu ◽  
Ying-Jia Cheng ◽  
Xian-Zheng Zhang

Recent advances in nanomaterials for enhanced therapeutic efficacy of photothermal therapy in tumor treatment were highlighted.


2020 ◽  
Vol 16 (6) ◽  
pp. 739-762
Author(s):  
Minyu Zhou ◽  
Yunfei Zhou ◽  
Yixin Cheng ◽  
Yanqi Wu ◽  
Jun Yang ◽  
...  

Photothermal therapy (PTT) is a minimally invasive tumor treatment method in which photothermal conversion agents (PTAs) can be enriched in tumor tissue by external light stimulation to convert photon energy into thermal energy to induce the temperature of tumor tissue higher than normal physiological, and can effectively kill tumor cells and tissues while avoiding damage to healthy tissue. As a well-known biocompatible nanomaterial, gold-based nanomaterials have high photothermal conversion efficiency and cross section, which can be used in tumor targeting therapy treatment as a potential photothermal conversion agent. Combining PTT and chemotherapy can be achieved by loading a chemotherapeutic drug modified on the surface of a gold nanomaterials. Therefore, this paper first reviews the preparation and surface functionalization of Au-based nanomaterials, such as Au nanorods, Au nanostars, Au nanoshells, and so on. Second, we have also introduced the application of Au-based nanomaterials in PTT, chemotherapy, and combination therapy. Finally, the limitations and challenges of Au-based photothermal conversion agents are summarized and the development prospects in this field are prospected.


Sign in / Sign up

Export Citation Format

Share Document