scholarly journals Tectonic-Sedimentary Interplay of a Multi-Sourced, Structurally-Confined Turbidite System in a Foreland Basin Setting: The Pennsylvanian Lower Atoka Formation, Ouachita Mountains, USA

2020 ◽  
Author(s):  
Pengfei Hou ◽  
Leslie Wood ◽  
Zane Jobe
2021 ◽  
Vol 91 (7) ◽  
pp. 683-709
Author(s):  
Pengfei Hou ◽  
Lesli J. Wood ◽  
Zane R. Jobe

ABSTRACT Submarine fans deposited in structurally complex settings record important information on basin evolution and tectonic–sedimentary relationships but are often poorly preserved in outcrops due to syndepositional and post depositional deformation. This study aims to understand the influence of tectonics on the deposition of the synorogenic Pennsylvanian lower Atoka submarine fan system deposited in a structurally complex foreland basin during the Ouachita orogeny. This study is a synthesis of new outcrop stratigraphic data as well as published stratigraphic and structural data. The lower Atoka crops out in the Ouachita Mountains and the southern Arkoma Basin and is divided into three structural–depositional zones: the foredeep, the wedge top, and the continental foreland. The mean paleoflow is axial, and each zone exhibits unique patterns in facies distribution. The foredeep consists of two fan systems, a large westward-prograding fan that exhibits significant longitudinal and lateral facies changes, and a small eastward-prograding fan on the western part. The wedge top consists of a westward-prograding fan that exhibits subtle longitudinal facies change. The continental foreland consists of small slope fan systems along the northern and western margins. By comparing to basin morphology and structural styles, we interpret the facies distribution patterns in the three zones as the result of different combinations of lateral structural confinement, axial and lateral sediment supply, and paleogeography. This study provides an improved and comprehensive understanding of the lower Atoka deepwater system and has implications for deciphering the tectonic–sedimentary relationships in laterally confined submarine fan systems.


2014 ◽  
Vol 21 (1-2) ◽  
Author(s):  
Aleš Novák ◽  
Tomáš Lehotský

A detailed field facies and ichnofacies analysis undertaken in the eastern part of the Nízký Jesník Mts. revealed that the basal part of Hradec-Kyjovice Formation of Upper Viséan age corresponded to coarse-grained siliciclastic turbidite system. Research was focused on detailed measurement of fifteen outcrops in the area. The formation was deposited in deep water environmental of the foreland basin by sediment gravity flows. Five facies were identified in the Hradec Member of the Hradec-Kyjovice Formation: conglomerate facies, pebble to coarse grained sandstone facies, coarse grained sandstone facies, sandstone-siltstone facies and the muddy siltstone facies. The conglomerate facies, pebble to coarse grained sandstone facies and coarse grained sandstone facies represent proximal, coarse grained channel deposits of high-density turbidite currents. The sandstone-siltstone sediments consist of a variety of turbidites deposites in lobes and interchannel environments. The muddy siltstone facies were deposited in interchannel environments by lowdensity turbidite currents. Some depositional lobes contain trace fossils of the Nereites ichnofacies. Sedimentary record of the basal parts of the Hradec-Kyjovice Formation indicates a Late Viséan a change in the development of Culm basin in Upper Viséan and beginning of new sedimentary cycle of sedimentation governed presumably by a compressional tectonic pulse.


2018 ◽  
Vol 3 ◽  
pp. 67-100 ◽  
Author(s):  
ReBecca K. Hunt-Foster ◽  
Martin G. Lockley ◽  
Andrew R.C. Milner ◽  
John R. Foster ◽  
Neffra A. Matthews ◽  
...  

Although only recognized as a discrete stratigraphic unit since 1944, the Cedar Mountain Formation represents tens of millions of years of geological and biological history on the central Colorado Plateau. This field guide represents an attempt to pull together the results of recent research on the lithostratigraphy, chronostratigraphy, sequence stratigraphy, chemostratigraphy, and biostratigraphy of these medial Mesozoic strata that document the dynamic and complex geological history of this region. Additionally, these data provide a framework by which to examine the history of terrestrial faunas during the final breakup of Pangaea. In fact, the medial Mesozoic faunal record of eastern Utah should be considered a keystone in understanding the history of life across the northern hemisphere. Following a period of erosion and sediment bypass spanning the Jurassic–Cretaceous boundary, sedimentation across the quiescent Colorado Plateau began during the Early Cretaceous. Thickening of these basal Cretaceous strata across the northern Paradox Basin indicate that salt tectonics may have been the predominant control on deposition in this region leading to the local preservation of fossiliferous strata, while sediment bypass continued elsewhere. Thickening of overlying Aptian strata west across the San Rafael Swell provides direct evidence of the earliest development of a foreland basin with Sevier thrusting that postdates geochemical evidence for the initial development of a rain shadow.


2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.


2016 ◽  
Vol 3 ◽  
pp. 67-100
Author(s):  
ReBecca Hunt-Foster ◽  
Martin Lockley ◽  
Andrew Milner ◽  
John Foster ◽  
Neffra Matthews ◽  
...  

Although only recognized as a discrete stratigraphic unit since 1944, the Cedar Mountain Formation represents tens of millions of years of geological and biological history on the central Colorado Plateau. This field guide represents an attempt to pull together the results of recent research on the lithostratigraphy, chronostratigraphy, sequence stratigraphy, chemostratigraphy, and biostratigraphy of these medial Mesozoic strata that document the dynamic and complex geological history of this region. Additionally, these data provide a framework by which to examine the history of terrestrial faunas during the final breakup of Pangaea. In fact, the medial Mesozoic faunal record of eastern Utah should be considered a keystone in understanding the history of life across the northern hemisphere. Following a period of erosion and sediment bypass spanning the Jurassic–Cretaceous boundary, sedimentation across the quiescent Colorado Plateau began during the Early Cretaceous. Thickening of these basal Cretaceous strata across the northern Paradox Basin indicate that salt tectonics may have been the predominant control on deposition in this region leading to the local preservation of fossiliferous strata, while sediment bypass continued elsewhere. Thickening of overlying Aptian strata west across the San Rafael Swell provides direct evidence of the earliest development of a foreland basin with Sevier thrusting that postdates geochemical evidence for the initial development of a rain shadow.


Sign in / Sign up

Export Citation Format

Share Document