scholarly journals An analysis of embedded weak discontinuity approaches for the finite element modelling of heterogeneous materials

2021 ◽  
Author(s):  
Alejandro Ortega Laborin ◽  
Yann MALECOT ◽  
Emmanuel ROUBIN ◽  
Laurent DAUDEVILLE

This paper analyses in detail the use of the Embedded Finite Element Method (E-FEM) to simulate local material heterogeneities. The work starts by a making a short review on the evolution of weak discontinuity models within the E-FEM framework to discuss how they account for the presence of multiple materials within a single element structure. A theoretical basis is introduced through some mathematical weak discontinuity definitions and the Hu-Washizu variational principle, for then establishing a set of requirements for retaining variational and kinematic consistency for any weak discontinuity enhancement proposal. From a general definition of a displacement enhancement field, two particular enhancement functions are derived by considering different consistency requirements: one which has been typically used in previous works and other which truly possesses variational consistency. A discussion is held on enhancement stability properties and the impact to global finite element solution processes. In the end, numerical simulations are made to assess the performance of each of these enhancements on the task of modelling a classical bi-material layered 3D tension problem. The final discussion evaluates both model performance and ease of implementation.

2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 322
Author(s):  
Evelina Volpe ◽  
Luca Ciabatta ◽  
Diana Salciarini ◽  
Stefania Camici ◽  
Elisabetta Cattoni ◽  
...  

The development of forecasting models for the evaluation of potential slope instability after rainfall events represents an important issue for the scientific community. This topic has received considerable impetus due to the climate change effect on territories, as several studies demonstrate that an increase in global warming can significantly influence the landslide activity and stability conditions of natural and artificial slopes. A consolidated approach in evaluating rainfall-induced landslide hazard is based on the integration of rainfall forecasts and physically based (PB) predictive models through deterministic laws. However, considering the complex nature of the processes and the high variability of the random quantities involved, probabilistic approaches are recommended in order to obtain reliable predictions. A crucial aspect of the stochastic approach is represented by the definition of appropriate probability density functions (pdfs) to model the uncertainty of the input variables as this may have an important effect on the evaluation of the probability of failure (PoF). The role of the pdf definition on reliability analysis is discussed through a comparison of PoF maps generated using Monte Carlo (MC) simulations performed over a study area located in the Umbria region of central Italy. The study revealed that the use of uniform pdfs for the random input variables, often considered when a detailed geotechnical characterization for the soil is not available, could be inappropriate.


2021 ◽  
Vol 444 ◽  
pp. 109453
Author(s):  
Camille Van Eupen ◽  
Dirk Maes ◽  
Marc Herremans ◽  
Kristijn R.R. Swinnen ◽  
Ben Somers ◽  
...  

2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


Author(s):  
Balakrishna Adhikari ◽  
BN Singh

In this paper, a finite element study is conducted using the Green Lagrange strain field based on vonKarman assumptions for the geometric nonlinear static and dynamic response of the laminated functionally graded CNT reinforced (FG-CNTRC) composite plate. The governing equations for determining the nonlinear static and dynamic behavior of the FG-CNTRC plate are derived using the Lagrange equation of motion based on Reddy's higher order theory. Using the direct iteration technique, the nonlinear eigenvalues for analyzing the free vibration response are obtained and the nonlinear dynamic responses of the FG-CNTRC plate are encapsulated based on the nonlinear Newmark integration scheme. The impact of the amplitude of vibration on mode switching phenomena and the consequence of the duration of the pulse on the free vibration regime of the plate are outlined. Also, the effect of time dependent loads is studied on the normal stresses of the plate. Furthermore, the impact on the nonlinear static and dynamic response of the laminated FG-CNTRC plate of various parameters such as span-thickness ratio (b/h ratio), aspect ratio (a/b ratio), different edge constraints, CNT fiber gradation, etc. are also studied.


2008 ◽  
Vol 51 (spe) ◽  
pp. 83-89
Author(s):  
Anke Bergmann ◽  
Juliana Miranda Dutra de Resende ◽  
Sebastião David Santos-Filho ◽  
Marcelo Adeodato Bello ◽  
Juliana Flavia de Oliveira ◽  
...  

Breast cancer is still associated with high mortality rates and one of the most important factors governing long survival is accurate and early diagnosis. In underdeveloped countries, this disease frequently is only detected in advanced stages; however, through mammography, many women have been diagnosed at early stages. In this context, the sentinel lymph node (SLN) technique is associated with less postoperative morbidity compared to axillary lymphadenectomy. Lymphoscintigraphy has emerged as a method for the evaluation of lymphatic drainage chains in various tumours, being both accurate and non invasive. The aim of this work is to present the main aspects which cause controversy about SLN and lymphoscintigraphy and the impact that these procedures have had on lymphedema after surgical treatment for breast cancer. A short review including papers in English, Spanish and Portuguese, available on Lilacs and Medline database, published between January, 2000 and July, 2008 was performed. The key words breast cancer, lymphoscintigraphy, SLN biopsy, lymphedema were used. Various studies have aimed to compare the incidence and prevalence of lymphedema according to the technique used; however, the population subjected to SLN is different from the one with indication for axillary lymphadenectomy regarding staging. Moreover, little is known about long term morbidity since it is a relatively new technique. In conclusion, the development of surgical techniques has permitted to minimize deformities and the current trend is that these techniques be as conservative as possible. Thus, lymphoscintigraphy plays an important role in the identification of SLN, contributing to the prevention and minimization of postoperative complications.


Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Steve Kanters ◽  
Mohammad Ehsanul Karim ◽  
Kristian Thorlund ◽  
Aslam Anis ◽  
Nick Bansback

Abstract Background The use of individual patient data (IPD) in network meta-analyses (NMA) is rapidly growing. This study aimed to determine, through simulations, the impact of select factors on the validity and precision of NMA estimates when combining IPD and aggregate data (AgD) relative to using AgD only. Methods Three analysis strategies were compared via simulations: 1) AgD NMA without adjustments (AgD-NMA); 2) AgD NMA with meta-regression (AgD-NMA-MR); and 3) IPD-AgD NMA with meta-regression (IPD-NMA). We compared 108 parameter permutations: number of network nodes (3, 5 or 10); proportion of treatment comparisons informed by IPD (low, medium or high); equal size trials (2-armed with 200 patients per arm) or larger IPD trials (500 patients per arm); sparse or well-populated networks; and type of effect-modification (none, constant across treatment comparisons, or exchangeable). Data were generated over 200 simulations for each combination of parameters, each using linear regression with Normal distributions. To assess model performance and estimate validity, the mean squared error (MSE) and bias of treatment-effect and covariate estimates were collected. Standard errors (SE) and percentiles were used to compare estimate precision. Results Overall, IPD-NMA performed best in terms of validity and precision. The median MSE was lower in the IPD-NMA in 88 of 108 scenarios (similar results otherwise). On average, the IPD-NMA median MSE was 0.54 times the median using AgD-NMA-MR. Similarly, the SEs of the IPD-NMA treatment-effect estimates were 1/5 the size of AgD-NMA-MR SEs. The magnitude of superior validity and precision of using IPD-NMA varied across scenarios and was associated with the amount of IPD. Using IPD in small or sparse networks consistently led to improved validity and precision; however, in large/dense networks IPD tended to have negligible impact if too few IPD were included. Similar results also apply to the meta-regression coefficient estimates. Conclusions Our simulation study suggests that the use of IPD in NMA will considerably improve the validity and precision of estimates of treatment effect and regression coefficients in the most NMA IPD data-scenarios. However, IPD may not add meaningful validity and precision to NMAs of large and dense treatment networks when negligible IPD are used.


Sign in / Sign up

Export Citation Format

Share Document