scholarly journals FACE RECOGNITION SYSTEM BY IMAGE PROCESSING

2020 ◽  
Author(s):  
Bilal Salih Abed Alhayani ◽  
Milind Rane

A wide variety of systems require reliable person recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that only a legitimate user and no one else access the rendered services. Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. Face can be used as Biometrics for person verification. Face is a complex multidimensional structure and needs a good computing techniques for recognition. We treats face recognition as a two-dimensional recognition problem. A well-known technique of Principal Component Analysis (PCA) is used for face recognition. Face images are projected onto a face space that encodes best variation among known face images. The face space is defined by Eigen face which are eigenvectors of the set of faces, which may not correspond to general facial features such as eyes, nose, lips. The system performs by projecting pre extracted face image onto a set of face space that represent significant variations among known face images. The variable reducing theory of PCA accounts for the smaller face space than the training set of face. A Multire solution features based pattern recognition system used for face recognition based on the combination of Radon and wavelet transforms. As the Radon transform is in-variant to rotation and a Wavelet Transform provides the multiple resolution. This technique is robust for face recognition. The technique computes Radon projections in different orientations and captures the directional features of face images. Further, the wavelet transform applied on Radon space provides multire solution features of the facial images. Being the line integral, Radon transform improves the low-frequency components that are useful in face recognition

Author(s):  
Eman A. Gheni ◽  
Zahraa M. Algelal

<p class="JESTECAbstract">Human face Recognition systems are increasingly gaining more importance and can be utilized throughout many applications like video surveillance, Security, human-computer intelligent interaction, etc. this paper presents performance comparison between three feature extraction techniques for an automatic face recognition system. In the first step, we benefit from wavelet Transforms, Principal Component Analysis (PCA) and combining Wavelet with PCA as feature extracting methods. After feature vectors generation, linear and nonlinear Support Vector Machines (SVM) are usually used for implementing the classification or recognition step. These methods are compared on accuracy in an ORL database for face recognition applications including 400 images of 40 people.</p>


Author(s):  
Dattatray V. Jadhav ◽  
V. Jadhav Dattatray ◽  
Raghunath S. Holambe ◽  
S. Holambe Raghunath

Various changes in illumination, expression, viewpoint, and plane rotation present challenges to face recognition. Low dimensional feature representation with enhanced discrimination power is of paramount importance to face recognition system. This chapter presents transform based techniques for extraction of efficient and effective features to solve some of the challenges in face recognition. The techniques are based on the combination of Radon transform, Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT). The property of Radon transform to enhance the low frequency components, which are useful for face recognition, has been exploited to derive the effective facial features. The comparative study of various transform based techniques under different conditions like varying illumination, changing facial expressions, and in-plane rotation is presented in this chapter. The experimental results using FERET, ORL, and Yale databases are also presented in the chapter.


Author(s):  
M.Lokeswara Reddy ◽  
P.Ramana Reddy

A face recognition algorithm based on NMPKPCA algorithm presented in this paper. The proposed algorithm when compared with conventional Principal component analysis (PCA) algorithms has an improved recognition Rate for face images with large variations in illumination, facial expressions. In this technique, first phase congruency features are extracted from the face image so that effects due to illumination variations are avoided by considering phase component of image. Then, face images are divided into small sub images and the kernel PCA approach is applied to each of these sub images. but, dividing into small or large modules creates some problems in recognition. So a special modulation called neighborhood defined modularization approach presented in this paper, so that effects due to facial variations are avoided. Then, kernel PCA has been applied to each module to extract features. So a feature extraction technique for improving recognition accuracy of a visual image based facial recognition system presented in this paper.


2010 ◽  
Vol 40-41 ◽  
pp. 523-530 ◽  
Author(s):  
Dong Cheng Shi ◽  
Qing Qing Wang

As the most successful method of linear distinguish, principal component analysis(PCA) method is widely used in identify areas, such as face recognition. But traditional PCA is influenced by light conditions, facial expression and it extracts the global features of the image, so the recognition rate is not very high. In order to improve more accurately identify facial features and extract local features which account for a larger contribution to the identification. This paper brings up a method of a block face recognition based on wavelet transform (WT-BPCA). In the algorithm, face images are done two-dimensional wavelet decomposition, then from which extract low frequency sub-images. According to different face area makes different contribution to recognition, we use sub-block PCA method. According to the contribution of the block recognition results generate weighting factors, the face recognition rate based on PCA is effectively improved. Finally we construct classification to recognite. Do experiments in the ORL face database. Results show that this method is superior to the method of the traditional PCA.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Oluwakemi C Abikoye ◽  
Iyabo F Shoyemi ◽  
Taye O Aro

Principle Component Analysis (PCA) is an appearance-based technique for extraction of feature extraction that is commonly used in computer vision and image processing. This technique suffers from illumination variations, thus knowing which illumination control method to be used in PCA-based face recognition system is very important. This paper applies three selected normalization techniques; Discrete Cosine Transform (DCT), Adaptive Histogram Equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to normalize face images. PCA was further used to extract features from the normalized face images. Euclidean distance was used to classify extracted features. The best recognition accuracy of 91.84% was obtained in DCT for ORL Database, while the best accuracy of 76% was achieved in DCT for FERET Database. The highest FAR of 0.9 was achieved in DCT for ORL Database, while the highest FAR of 0.5 was obtained in DCT and AHE for FERET Database. The highest FRR of 0.2821 was achieved in CLAHE for ORL Database, while 0.3000 was obtained in AHE for FERET Database. It was concluded that illumination control approaches have predominant effect on PCA–based facial recognition system. Keywords— Adaptive Histogram Equalization, Contrast Adaptive Histogram Equalization, Discrete Cosine Transform Illumination Normalization, Principal Component Analysis


2012 ◽  
Vol 9 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Marijeta Slavkovic ◽  
Dubravka Jevtic

In this article, a face recognition system using the Principal Component Analysis (PCA) algorithm was implemented. The algorithm is based on an eigenfaces approach which represents a PCA method in which a small set of significant features are used to describe the variation between face images. Experimental results for different numbers of eigenfaces are shown to verify the viability of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1013
Author(s):  
Sayan Maity ◽  
Mohamed Abdel-Mottaleb ◽  
Shihab S. Asfour

Biometric identification using surveillance video has attracted the attention of many researchers as it can be applicable not only for robust identification but also personalized activity monitoring. In this paper, we present a novel multimodal recognition system that extracts frontal gait and low-resolution face images from frontal walking surveillance video clips to perform efficient biometric recognition. The proposed study addresses two important issues in surveillance video that did not receive appropriate attention in the past. First, it consolidates the model-free and model-based gait feature extraction approaches to perform robust gait recognition only using the frontal view. Second, it uses a low-resolution face recognition approach which can be trained and tested using low-resolution face information. This eliminates the need for obtaining high-resolution face images to create the gallery, which is required in the majority of low-resolution face recognition techniques. Moreover, the classification accuracy on high-resolution face images is considerably higher. Previous studies on frontal gait recognition incorporate assumptions to approximate the average gait cycle. However, we quantify the gait cycle precisely for each subject using only the frontal gait information. The approaches available in the literature use the high resolution images obtained in a controlled environment to train the recognition system. However, in our proposed system we train the recognition algorithm using the low-resolution face images captured in the unconstrained environment. The proposed system has two components, one is responsible for performing frontal gait recognition and one is responsible for low-resolution face recognition. Later, score level fusion is performed to fuse the results of the frontal gait recognition and the low-resolution face recognition. Experiments conducted on the Face and Ocular Challenge Series (FOCS) dataset resulted in a 93.5% Rank-1 for frontal gait recognition and 82.92% Rank-1 for low-resolution face recognition, respectively. The score level multimodal fusion resulted in 95.9% Rank-1 recognition, which demonstrates the superiority and robustness of the proposed approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tai-Xiang Jiang ◽  
Ting-Zhu Huang ◽  
Xi-Le Zhao ◽  
Tian-Hui Ma

We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or rows, since faces are discerned by patches containing eyes and noses. To calculate the correlation between patches, face images are divided into patches and then these patches are converted to column vectors which would be combined into a new “image matrix.” By replacing the images with the new “image matrix” in the two-dimensional PCA framework, we directly calculate the correlation of the divided patches by computing the total scatter. By optimizing the total scatter of the projected samples, we obtain the projection matrix for feature extraction. Finally, we use the nearest neighbor classifier. Extensive experiments on the ORL and FERET face database are reported to illustrate the performance of the patch-based PCA. Our method promotes the accuracy compared to one-dimensional PCA, two-dimensional PCA, and two-directional two-dimensional PCA.


Author(s):  
Prasad A. Jagdale ◽  
Sudeep D. Thepade

Nowadays the system which holds private and confidential data are being protected using biometric password such as finger recognition, voice recognition, eyries and face recognition. Face recognition match the current user face with faces present in the database of that security system and it has one major drawback that it never works better if it doesn’t have liveness detection. These face recognition system can be spoofed using various traits. Spoofing is accessing a system software or data by harming the biometric recognition security system. These biometric systems can be easily attacked by spoofs like peoples face images, masks and videos which are easily available from social media. The proposed work mainly focused on detecting the spoofing attack by training the system. Spoofing methods like photo, mask or video image can be easily identified by this method. This paper proposed a fusion technique where different features of an image are combining together so that it can give best accuracy in terms of distinguish between spoof and live face. Also a comparative study is done of machine learning classifiers to find out which classifiers gives best accuracy.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Timur Düzenli ◽  
Nalan Özkurt

The performance of wavelet transform-based features for the speech/music discrimination task has been investigated. In order to extract wavelet domain features, discrete and complex orthogonal wavelet transforms have been used. The performance of the proposed feature set has been compared with a feature set constructed from the most common time, frequency and cepstral domain features such as number of zero crossings, spectral centroid, spectral flux, and Mel cepstral coefficients. The artificial neural networks have been used as classification tool. The principal component analysis has been applied to eliminate the correlated features before the classification stage. For discrete wavelet transform, considering the number of vanishing moments and orthogonality, the best performance is obtained with Daubechies8 wavelet among the other members of the Daubechies family. The dual tree wavelet transform has also demonstrated a successful performance both in terms of accuracy and time consumption. Finally, a real-time discrimination system has been implemented using the Daubhecies8 wavelet which has the best accuracy.


Sign in / Sign up

Export Citation Format

Share Document