scholarly journals THE EFFECT OF DARRIEUS AND SAVONIUS WIND TURBINES POSITION ON THE PERFORMANCE OF THE HYBRID WIND TURBINE AT LOW WIND SPEED

2020 ◽  
Author(s):  
Nawfal M. Ali ◽  
Abdul Hassan A. K ◽  
Sattar Aljabair

This paper presents an experimental and numerical simulation to investigate a hybrid vertical axis wind turbine model highly efficient which can be worked at low wind speed by studying the aerodynamic characteristics of four models of hybrid VAWTs. The hybrid WT consists of the SWT having two blades and the DWT type straight having two blades. Four models were constructed to study experimentally and numerically to choose the best model. Two models were DWT in the upper and SWT in the lower, also two models were SWT in the upper and DWT in the lower. The phase stage angle between the turbines is 0o and 90o . The experimental and numerical results showed that the performance of hybrid WT where DWT in the upper and SWT in the lower with phase stage 90o is better than in the other models, it can be started to work at a wind velocity of 2.2 m/s. At the wind velocity 3 m/s, the values of the parameters are the rotational speed (198 rpm), the CP (0.3195), the CT (0.2003), the TSR (1.6) and self-starting rotation at this value of wind velocity (3 m/s). The efficiency of extracting the wind power by hybrid WT is (51.2 %).

2011 ◽  
Vol 347-353 ◽  
pp. 340-343 ◽  
Author(s):  
Jian Jun Qu ◽  
Ming Wei Xu ◽  
Yi Mei

The structure of vertical axis wind turbine with wind speed-adapting is based on Darrieus straight-bladed turbine. It features that its blades are composed of movable and fixed blades. Through the opening and closing of the movable blades to adapt to the wind speed automatically, the turbine not only can start up in low wind speed, but also realize the conversion from drag-mode to lift-mode. Due to the special structure, the aerodynamic model of this turbine in drag-mode is different from that of Savonius and Darrieus turbine. So in this article, the aerodynamic model of this turbine in drag-mode is established. Then the coefficient of start-up torque is calculated and compared with that of Darrieus straight-bladed turbine which has the same size. The results show that the start-up performance of this turbine is obviously better than that of Darrieus straight-bladed turbine.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Author(s):  
Mohamed Saiful Firdaus Hussin ◽  
Mohd Fariduddin Mukhtar ◽  
Mohd Zaidi Mohd Tumari ◽  
Nursabillilah Mohd Ali ◽  
Amir Abdullah Muhammad Damanhuri ◽  
...  

KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 172
Author(s):  
Tedy Harsanto ◽  
Haryo Dwi Prananto ◽  
Esmar Budi ◽  
Hadi Nasbey

<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>


Author(s):  
Jinwook Kim ◽  
Dohyung Lee ◽  
Junhee Han ◽  
Sangwoo Kim

The Vertical Axis Wind Turbine (VAWT) has advantages over Horizontal Axis Wind Turbine (HAWT) that it allows less chance to be degraded independent of wind direction and turbine can be operated even at the low wind speed. The objective of this study is to analyze aerodynamics of the VAWT airfoil and investigate the ideal shape of airfoil, more specifically cambers. The analysis of aerodynamic characteristics with various cambers has been performed using numerical simulation with CFD software. As the numerical simulation discloses local physical features around wind turbine, aerodynamic performance such as lift, drag and torque are computed for single airfoil rotation and multiple airfoil rotation cases. Through this study more effective airfoil shape is suggested based vortex-airfoil interaction studies.


2016 ◽  
Author(s):  
Akshay Basavaraj

In regions of low wind speed, overcoming the starting torque of a Vertical Axis Wind Turbine (VAWT) becomes a challenge aspect. In order to overcome this adversity, careful selection of airfoils for the turbine blades becomes a priority. This paper tries to address the issue utilizing an approach wherein by observing the effect of merging two airfoils. Two airfoils which are of varying camber and thickness are merged and their aerodynamic characteristics are evaluated using the software XFOIL 6.96. For a variation in angle of attack from 0 to 90°, aerodynamic analysis is done in order to observe the behavior of one quarter of the entire VAWT cycle. An objective function is developed so as to observe the maximum possible torque generated by these airfoils at Reynolds number varying from 15,000–120,000. Due to change in the value of CL observed at Low Reynolds Number using commercial CFD softwares, multiple objective functions are utilized to observe the behavior over a range of Reynolds number. An experimental co-relation between the cut-in velocity and the lift-coefficient of the airfoils is developed in order to predict the cut-in velocity of the interpolated airfoils. The airfoils used for this paper are NACA 0012, NACA 0018, FX 66 S196, Clark Y (smooth), PT 40, SD 7032, A 18, SD 7080, SG 6043 and SG 6040.


Author(s):  
Mohamed Saiful Firdaus Hussin ◽  
Ridhwan Jumaidin ◽  
Nursabillilah Mohd Ali ◽  
Muhammad Ashraf Fauzi ◽  
Shahrizal Saat ◽  
...  

2014 ◽  
Author(s):  
Jobaidur R. Khan ◽  
Mosfequr Rahman

Amidst of high demand of energy, the world is seeking alternative energy sources. Wind alone can fulfill most of the energy requirement of the world by its efficient conversion into energy. On efficiency measurement, Horizontal Axis Wind Turbines (HAWT) is the popular to the researchers, but it works best in places where the wind is not disturbed and has high wind power. The inherent advantage of facing the wind direction, design simplicity, less expensive technology for construction, lower wind start-up speeds, easier maintenance, and relatively quietness are turning the focus to Vertical Axis Wind Turbine (VAWT). The low wind speed and non-smooth wind flow regions are attracted for these machines. Savonius turbine is the simplest form of VAWT and operation is based on the difference of the drag force on its blades. The main objective of this study is to analyze a perfect mixture of new and innovative designs of Savonius turbine blades, which can make VAWT more attractive, efficient, durable and sustainable. This is studied by using blade with different numbers in operating in different wind speed. A Computational Fluid Dynamics (CFD) analysis has been used. 2D CAD models of various VAWT geometries are created and tested with CFD software ANSYS/FLUENT with a similar flow-driven motion in a wind tunnel. These simulations provided the aero-dynamic characteristics like shear stress, velocity distribution and pressure distribution. Some physical models with desired properties needed to be fabricated and tested inside tunnel to find the effect of different shapes in real.


Sign in / Sign up

Export Citation Format

Share Document