scholarly journals PLUCK TESTS ON OPERATING DEEPWATER PIPELINE SPANS

2020 ◽  
Author(s):  
Ralf Peek ◽  
Chiara A. Bernardo ◽  
Hui Min Hong ◽  
Conleth D. O’Loughlin ◽  
David White ◽  
...  

Key uncertainties in the assessment of subsea pipeline spans for fatigue due to vortex-induced vibrations (VIV) are the effective axial force, the soil spring stiffness, and the soil damping. To reduce these uncertainties, pluck tests have been carried out, to determine the natural frequency and damping of single and multiple spans. These are carried out by pulling the span laterally at midspan with the ROV, until a 6mm or 8mm PP rope that serves as a weak link in the connection from the pipeline and the ROV breaks. The free vibrations resulting from this pluck are measured with accelerometers attached to the pipeline. The paper presents selected results from these tests and their interpretation in terms modal frequencies and damping ratios. Already at the achieved amplitudes of vibration of up to about 0.01D, the results already show considerable nonlinearity and inelasticity that is thought to come from the soil supporting the pipe at the shoulders of the span, and can be captured in FE models by making the soil springs nonlinear and inelastic.

2013 ◽  
Vol 706-708 ◽  
pp. 1405-1408
Author(s):  
Xi Ping Guo ◽  
Shuang Zhou

Stress and deformation analysis of 950 mill housing was done by means of ANSYS to calculate the maximum stress and deformation. Strength and stiffness of the mill roll were checked to meet requirements. Carries on the modal analysis to the rolling-mill housing, obtains its first 10 steps the natural frequency and the mode of vibration, through the vibration model diagram analysis frame of the weak link,and it is significant for similar mill housing designs.


2011 ◽  
Vol 368-373 ◽  
pp. 2483-2490
Author(s):  
Yao Ting Zhang ◽  
Yi Zheng ◽  
Hong Jian Li

A dynamic test of two unbonded fully prestressed concrete beams has been conducted. The results indicate that the natural frequency of beams increases with the prestress force, which is opposite to the analytical arguments for homogeneous and isotropic beams subject to axial force. This paper explains the change in frequencies by discussing the change in the elastic modulus. A modified formula is also proposed, and the experimental data agree well with the theoretical analysis.


2021 ◽  
pp. 107754632110511
Author(s):  
Arameh Eyvazian ◽  
Chunwei Zhang ◽  
Farayi Musharavati ◽  
Afrasyab Khan ◽  
Mohammad Alkhedher

Treatment of the first natural frequency of a rotating nanocomposite beam reinforced with graphene platelet is discussed here. In regard of the Timoshenko beam theory hypothesis, the motion equations are acquired. The effective elasticity modulus of the rotating nanocomposite beam is specified resorting to the Halpin–Tsai micro mechanical model. The Ritz technique is utilized for the sake of discretization of the nonlinear equations of motion. The first natural frequency of the rotating nanocomposite beam prior to the buckling instability and the associated post-critical natural frequency is computed by means of a powerful iteration scheme in reliance on the Newton–Raphson method alongside the iteration strategy. The impact of adding the graphene platelet to a rotating isotropic beam in thermal ambient is discussed in detail. The impression of support conditions, and the weight fraction and the dispersion type of the graphene platelet on the acquired outcomes are studied. It is elucidated that when a beam has not undergone a temperature increment, by reinforcing the beam with graphene platelet, the natural frequency is enhanced. However, when the beam is in a thermal environment, at low-to-medium range of rotational velocity, adding the graphene platelet diminishes the first natural frequency of a rotating O-GPL nanocomposite beam. Depending on the temperature, the post-critical natural frequency of a rotating X-GPL nanocomposite beam may be enhanced or reduced by the growth of the graphene platelet weight fraction.


2011 ◽  
Vol 94-96 ◽  
pp. 1511-1514
Author(s):  
Yi Fei Yan

The study is about submarine pipeline. Considering the impact of different axial force, The reduced velocity is introduced as the pipeline vibration effect of vortex trail releasing. The vibration parameters of the span pipeline are analyzed and vibration control formula is built. The natural span length of the submarine pipeline is calculated according to the DNV-OS-F101 rule. The natural frequency of the span pipeline and the allowable span length are solved. The case study of submarine pipeline in Chengdao oil field is made and the variation law of natural frequency of span pipeline is got. The stream reduced velocity decreases as the axial force increase. The theory analysis of the vortex induced vibration can provide the scientific basis for the safety design of offshore submarine pipeline.


Author(s):  
Andre´ Luiz Lupinacci Massa ◽  
Nelson Szilard Galgoul ◽  
Nestor Oscar Guevara Junior ◽  
Antonio Carlos Fernandes ◽  
Fa´bio Moreira Coelho ◽  
...  

Galgoul et al. (2004) have written a previous paper in which they have pointed out the conservatism of the latest recommendations for pipeline freespan evaluations, associated to the way the axial force is considered in the determination of the pipeline natural frequency. First because it fails to consider the fact, that the axial force of a sagging pipe, subject to temperature expansion, is much smaller than that of a straight pipe. Second because the effective axial force caused by internal pressure should not be used to determine the pipeline natural frequency. Fyrileiv and Collberg (2005) also discussed this aspect. In order to back up their previous arguments the authors decided to perform some tests an axially restrained pipeline at both ends, which was pressurized in order to justify their claims that these pipelines are not only under tension (and not compression), but also that their natural frequencies increase instead of reducing, although they do bend out because of the pressure, reaching a point of instability. The authors understand the effective axial force concept and the enormous simplifications, which it brings to an otherwise cumbersome problem, but wish to emphasize that these advantages are not unlimited and that this is one of these restrictions. To back up the text results a finite element model has been produced, in which the internal pressure is taken into account as it actually is (and not as an axial force) to show that the pipe wall stresses can only be obtained correctly in this manner.


2013 ◽  
Vol 353-356 ◽  
pp. 2159-2162
Author(s):  
Yan Bin Zhang ◽  
Fu Sheng Liu ◽  
Cong Lin ◽  
Lin Zhang

Dynamic analysis can be carried out quickly and accurately for the seismic performance of dam by using the finite element software. Added massed method is used for the dynamic water. Horizontal earthquake acceleration is 0.2G; vertical earthquake acceleration is two-third of horizontal earthquake acceleration; sub space iteration method is used for the modal analysis of the dam; Finding the maximum response-order mode shape, and then useing a combination of square and square root method to come to the conclusion of overall seismic response. The stress and strain of the dam had been analyzed and the weak link of key parts of the dam had been summarized in this article.It is concluded that seismic design requirement are satified for the dam.


Author(s):  
Jan V. Ulveseter ◽  
Svein Sævik ◽  
Carl M. Larsen

A promising time domain model for calculation of cross-flow vortex induced vibrations (VIV) is under development at the Norwegian University of Science and Technology. Time domain, as oppose to frequency domain, makes it possible to include non-linearities in the structural model. Pipelines that rest on an irregular seabed will experience free spans. In these areas VIV is a concern with respect to the fatigue life. In this paper, a time domain model for calculation of VIV on free spanning pipelines is proposed. The model has non-linear interaction properties consisting of discrete soil dampers and soil springs turning on or off depending on the pipeline response. The non-linear model is compared to two linear models with linear stiffness and damping properties. One linear model is based on the promising time domain VIV model, while the other one is based on RIFLEX and VIVANA, which calculates VIV in frequency domain. Through four case studies the effect of seabed geometry, current velocity and varying soil damping and soil stiffness is investigated for a specific pipeline. The results show that there is good agreement between the results produced by VIVANA and the linear model. The non-linear model predicts smaller stresses at the pipe shoulders, which is positive for the life time estimations. Soil damping does not influence the response significantly.


Sign in / Sign up

Export Citation Format

Share Document