Highly Sensitive, Ambient Temperature CO Sensor using Polyaniline/Tin Oxide/Palladium Composites

2021 ◽  
Author(s):  
Vinay Kishnani ◽  
Gulshan Verma ◽  
Ankur Gupta

In the present work, we report an excellent gas sensing performance of the unique nanocomposite films prepared with the help of different materials such as semiconductor metal-oxide, polymer and metal for carbon monoxide gas sensing at ambient temperature. The fabrication of SnO2/PANI/Pd nanocomposite film was performed using the hydrothermal route. The fabricated films were characterized with various analytical techniques such as X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), and Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) etc. Furthermore, DFT results are used to examine the transport and electronic properties of all prepared films. The computing results show that after hybridizing with Pd and SnO2, the response of the fabricated SnO2 and polyaniline (PANI) films to CO gas molecules is considerably improved. At room temperature, sensing characterization of the fabricated sensing films was carried out by using target gas concentrations with varying ppm level of 50 to 300. At ambient temperature, the SnO2/PANI/Pd film has the maximum sensitivity ~400.8% out of all the fabricated films at 0.3% of the target gas. Our findings show that SnO2, SnO2/Pd, PANI, and SnO2/PANI/Pd composite sensing films have a bright future in the gas sensing application with incredibly-higher sensitivity towards CO gas.

2021 ◽  
Author(s):  
Muhammad Aslam ◽  
Muhammad Basit ◽  
Muhammad Ahmad ◽  
Zulfiqar Ali Raza

Abstract The work reported here deals with the fabrication and characterization of iron oxide (Fe3O4) nanoparticles (NPs – IONPs) incorporated polyvinyl alcohol (PVA)-based nanocomposite films. The nanocomposite films, fabricated via solution casting route, have been characterized using advanced analytical techniques including x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and UV-visible (vis.) spectroscopy. There observed notable changes in the structural phases, crystallite size (2.3 to 2.1 nm), d-spacing (0.131 to 0.134 Å), optical absorption edge (5.12 to 4.84 eV), indirect bandgap (4.99 to 4.68 eV), direct bandgap (5.35 to 5.20 eV), and band tail (0.57 to 0.89 eV) from native PVA to nanocomposite films. The refractive index and optical conductivity enhancements were also observed on incorporating IONPs into the PVA matrix. It could be inferred that a minute loading of IONPs might induce significant alternation in opto-structural properties of the PVA-based nanocomposites for potential optoelectronic applications.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2018 ◽  
Vol 5 (10) ◽  
pp. 20904-20911
Author(s):  
Sachin S Bharadwaj ◽  
B.W. Shivaraj ◽  
H.N. Narasimha Murthy ◽  
M Krishna ◽  
Manjush Ganiger ◽  
...  

2012 ◽  
Vol 48 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Noely Camila Tavares Cavalcanti ◽  
Giovana Damasceno Sousa ◽  
Maria Alice Maciel Tabosa ◽  
José Lamartine Soares Sobrinho ◽  
Leila Bastos Leal ◽  
...  

The aim of this study was to characterize three batches of albendazole by pharmacopeial and complementary analytical techniques in order to establish more detailed specifications for the development of pharmaceutical forms. The ABZ01, ABZ02, and ABZ03 batches had melting points of 208 ºC, 208 ºC, and 209 ºC, respectively. X-ray diffraction revealed that all three batches showed crystalline behavior and the absence of polymorphism. Scanning electron microscopy showed that all the samples were crystals of different sizes with a strong tendency to aggregate. The samples were insoluble in water (5.07, 4.27, and 4.52 mg mL-1, respectively) and very slightly soluble in 0.1 M HCl (55.10, 56.90, and 61.70 mg mL-1, respectively) and additionally showed purities within the range specified by the Brazilian Pharmacopoeia 5th edition (F. Bras. V; 98% to 102%). The pharmacopeial assay method was not reproducible and some changes were necessary. The method was validated and showed to be selective, specific, linear, robust, precise, and accurate. From this characterization, we concluded that pharmacopeial techniques alone are not able to detect subtle differences in active pharmaceutical ingredients; therefore, the use of other complementary techniques is required to ensure strict quality control in the pharmaceutical industry.


2012 ◽  
Vol 583 ◽  
pp. 86-90 ◽  
Author(s):  
Hai Bin Li ◽  
Xin Yong Li ◽  
Yan De Song ◽  
Shu Guang Chen ◽  
Ying Wang ◽  
...  

TiO2nanotubes were prepared via a hydrothermal route. CeO2nanoparticles with diameters around 5nm were loaded onto the surface of TiO2nanotubes via a deposition approach followed by a calcination process. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectroscopy (UV-vis) were applied for the characterization of the as-prepared CeO2/TiO2nanotubes composites. The results show that CeO2particles are highly dispersed on the surface of TiO2nanotubes. The TiO2 nanotubes are modified to response to the visible light due to the combination with CeO2. The CeO2/TiO2nanotubes composites with a CeO2/TiO2atomic ratio of 2.5% show a further improvement on the photocatalytic activity for degradation of Rhodamine B in water. The presence of CeO2improves the light absorption of TiO2nanotubes and inhibits the electron-hole recombination.


2021 ◽  
Vol 234 ◽  
pp. 00106
Author(s):  
Houda Labjar ◽  
Hassan Chaair

The synthesis of apatite silicated Ca10(PO4)6-x(SiO4)x(OH)2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by heat treatment using calcium carbonate CaCO3 and phosphoric acid H3PO4 and silicon tetraacetate SiC8H20O4 (TEOS) in medium of water ethanol, with three different silicate concentrations. After drying, the samples are ground and then characterized by different analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron Microscopy (SEM) and chemical analysis.


1988 ◽  
Vol 32 ◽  
pp. 303-310
Author(s):  
T. Paul Adi ◽  
H. F. Stehmeyer

AbstractThe presence of metal oxide films from wave solder baths on timed module pins are partly responsible for non-wet problems in subsequent soldering steps. The cylindrical geometry of the pins lends itself to the characterization of thin oxide films by using the highly sensitive Debye-Scherrer camera method. As confirmed by Electron Hicroprobe Analysis (EMA), pins containing thin oxide films were used to obtain the diffraction patterns. A software program was developed that subtracts the diffraction angles of an oxids-free control pin from the pattern of the contaminated pin, and tabulates the residual d-spacing (interplanar distance) of the contaminant film.


2008 ◽  
Vol 47-50 ◽  
pp. 903-906
Author(s):  
Li Fei Chen ◽  
Hua Qing Xie ◽  
Yang Li ◽  
Wei Yu

Copper sulfide (CuS) nanocrystals with flower-like and tubular morphology have been successfully synthesized via a facile and convenient hydrothermal route at 75 °C by using CuCl2·2H2O as Cu-precursor, C2H5NS as S-source and CTAB as template molecules. The effect of concentration of reactants and template molecules on morphology has been discussed. X-ray diffraction pattern suggests that the CuS crystals are pure hexagonal phase. The morphology of the products has been studied by scanning electron microscope analysis. The absorption peaks of CuS in UV and near-IR regions indicate that the as-prepared CuS are promising in the development of photoelectric devices.


2011 ◽  
Vol 236-238 ◽  
pp. 538-542
Author(s):  
Yong Jun Liu

The deactivation behavior of industrial hydrodemetallization catalysts was investigated in the presented work. The main objective of the study is to contribute to a better understanding of the nature of the coke and metal deposition on the used catalysts by applying chemical analysis and various advanced analytical techniques, such as X-ray diffraction analysis (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and solid-state carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The results are discussed scientifically based on the physico–chemical properties of origin and used catalysts.


2019 ◽  
Vol 14 (31) ◽  
pp. 1-12
Author(s):  
Jamal M. Rzaij

Nanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C, 100°C, 150°C and 200°C) was calculated.


Sign in / Sign up

Export Citation Format

Share Document