scholarly journals Ice over troubled waters: Navigating the Northwest Passage using Inuit Knowledge and scientific information

2018 ◽  
Author(s):  
Bindu Panikkar ◽  
Benjamin Lemmond ◽  
Brent Else ◽  
Maribeth Murray

Sea ice throughout the Arctic is undergoing profound and rapid change. While ice conditions in the Canadian Arctic Archipelago have historically been more stable than conditions in the open ocean, a growing body of evidence indicates that the major thoroughfares in much of the western and central Canadian Arctic, including the Northwest Passage, are increasingly vulnerable to climatic forcing events. This is confirmed by the observations of Inuit elders and experienced hunters in the communities of Cambridge Bay, a hamlet along Dease Strait, and Kugluktuk, a hamlet situated at the mouth of the Coppermine River where it meets Coronation Gulf. People in these hamlets now face new navigational challenges due to sea-ice change. Navigation practices described by elders and hunters reflect an intimate knowledge of the land and ice topography, currents, and weather conditions for hundreds of kilometers around their communities, although people reported increasing unpredictable weather and ice conditions, making travel more treacherous. Many emphasized the importance of traditional knowledge and survival skills as necessary to adapt to ongoing and impending changes. They expressed particular concern that younger generations are untrained in traditional navigation practices, landscape- and weather-reading abilities, and survival practices. However, elders and hunters also stressed the need for more localized weather information derived from weather stations to help with navigation, as current weather and ice conditions are unprecedented in their lifetimes.

2006 ◽  
Vol 44 ◽  
pp. 329-338 ◽  
Author(s):  
Bea Alt ◽  
Katherine Wilson ◽  
Tom Carrières

AbstractThis case Study attempts to quantify the amount and timing of the import, export and through-flow of old ice in the Peary Channel–sverdrup Channel area of the northern Canadian Arctic Archipelago during the period 1998–2005. The Study combines quantitative weekly area-averaged ice coverage evaluations from the Canadian Ice Service (CIS) Digital Archive with detailed analysis of Radarsat imagery and ice-motion results from the CIS ice-motion algorithm. The results Show that in 1998 more than 70% of the old ice in Peary–sverdrup was lost, half by melt and export to the South and the other half by export north into the Arctic Ocean, and that no Arctic Ocean old ice was imported into Peary–sverdrup. A net import of 10% old ice was Seen in 1999, with Some indication of through-flow into Southern channels. In 2000, no net import of old ice occurred in Peary–sverdrup, but there was Significant through-flow, with evidence of old ice reaching the Northwest Passage by November. Full recovery of the old-ice regime was complete by the end of 2001. More than two-thirds of the recovery was due to the in Situ formation of Second-year ice. Conditions in the following 3 years were near normal.


2013 ◽  
Vol 7 (2) ◽  
pp. 1313-1358 ◽  
Author(s):  
S. E. L. Howell ◽  
T. Wohlleben ◽  
A. Komarov ◽  
L. Pizzolato ◽  
C. Derksen

Abstract. Record low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a level that was nearly exceeded in 2012 (150 × 103 km2). These values eclipsed previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2) and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the driving processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was driven by positive July surface air temperature (SAT) anomalies that facilitated rapid melt, coupled with atmospheric circulation in July and August that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also driven by positive July SAT anomalies (with coincident rapid melt) but further ice decline was temporarily mitigated by atmospheric circulation in August and September which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, evidence of both preconditioned thinner Arctic Ocean MYI flowing into CAA and maximum landfast first-year ice (FYI) thickness within the CAA was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to positive SAT forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.


FACETS ◽  
2021 ◽  
Vol 6 ◽  
pp. 1069-1087
Author(s):  
Luke Copland ◽  
Jackie Dawson ◽  
Adrienne Tivy ◽  
Frances Delaney ◽  
Alison Cook

There have been rapid recent reductions in sea ice age and extent in the Canadian Arctic, but little previous analysis of how this has impacted the navigability of Arctic shipping. In this study we analyze how navigability changed over the period 1972–2016 by converting Canadian Ice Service ice charts to shipping navigability charts for different hull strength classifications based on the Arctic Ice Regime Shipping System. Analysis focuses on the southern route of the Northwest Passage, and the Arctic Bridge route across Hudson Bay, for changes in early-season (∼25 June), mid-season (∼3 September), and late-season (∼15 October) conditions. Results reveal that there has been a marked easing in shipping navigability for all vessels over the past decade, driven by reductions in the area and age of sea ice, particularly across the southern route of the Northwest Passage. Both medium (Type B) and little (Type E) ice strengthened vessels were able to transit the full length of this route in the middle part of the shipping season in 2012–2016, but not in 1972–1976 or 1992–1996.


2008 ◽  
Vol 46 (2) ◽  
pp. 229-242 ◽  
Author(s):  
Stephen E.L. Howell ◽  
Adrienne Tivy ◽  
John J. Yackel ◽  
Steve McCourt

Polar Record ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 24-38 ◽  
Author(s):  
Frédéric Lasserre ◽  
Pierre-Louis Têtu

ABSTRACTWith the melting of sea ice in the Arctic, the potential for higher shipping access has markedly changed. Shipping activity in the Arctic is increasing, including tourism and exploration activities, underlining the need for reliable communication and monitoring. This article examines the interactions between climate and sea ice change, the patterns of cruise ship tourism through Arctic Canada and the interest of operators to increase their activities in the cruise tourism market in the region. Since 1995, the melting of the summer pack ice in the offers the possibilities of increased shipping in this region while encouraging speculation regarding the potential of the northwest passage (NWP) and the Canadian Arctic to become a major cruise maritime highway. Integrating research from both human and transport geography, this article presents an analysis of vessel movements. It also analyses perceptions of charters and cruise ship operators and of their interests in the cruise tourism market. Discussion is focused on issues associated with the lack of available vessels and maritime infrastructure, regulations in the Canadian arctic waters, security and search and rescue. This research could prove useful for communities, and policy makers, as well as the cruise sector itself, with regard to response to change in these remote locations.


2013 ◽  
Vol 7 (6) ◽  
pp. 1753-1768 ◽  
Author(s):  
S. E. L. Howell ◽  
T. Wohlleben ◽  
A. Komarov ◽  
L. Pizzolato ◽  
C. Derksen

Abstract. Remarkably low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a record-breaking level that was nearly exceeded in 2012 (150 × 103 km2). These values were lower than previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2), and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was associated with positive June through September (JJAS) surface air temperature (SAT) and net solar radiation (K*) anomalies that facilitated rapid melt, coupled with atmospheric circulation that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also associated with positive JJAS SAT and K* anomalies with coincident rapid melt, but further ice decline was temporarily mitigated by atmospheric circulation which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, preconditioning was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to anomalous thermodynamic forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


AMBIO ◽  
2021 ◽  
Author(s):  
Henry P. Huntington ◽  
Andrey Zagorsky ◽  
Bjørn P. Kaltenborn ◽  
Hyoung Chul Shin ◽  
Jackie Dawson ◽  
...  

AbstractThe Arctic Ocean is undergoing rapid change: sea ice is being lost, waters are warming, coastlines are eroding, species are moving into new areas, and more. This paper explores the many ways that a changing Arctic Ocean affects societies in the Arctic and around the world. In the Arctic, Indigenous Peoples are again seeing their food security threatened and cultural continuity in danger of disruption. Resource development is increasing as is interest in tourism and possibilities for trans-Arctic maritime trade, creating new opportunities and also new stresses. Beyond the Arctic, changes in sea ice affect mid-latitude weather, and Arctic economic opportunities may re-shape commodities and transportation markets. Rising interest in the Arctic is also raising geopolitical tensions about the region. What happens next depends in large part on the choices made within and beyond the Arctic concerning global climate change and industrial policies and Arctic ecosystems and cultures.


Polar Record ◽  
1995 ◽  
Vol 31 (178) ◽  
pp. 335-342 ◽  
Author(s):  
Paul A. Kay

AbstractSignificant warming in the Arctic is anticipated for doubled-CO2 scenarios, but temperatures in the eastern Canadian Arctic have not yet exhibited that trend in the last few decades. The spatial juxtaposition of the winter station in 1822–1823 of William Edward Parry's Northwest Passage expedition with the modern Igloolik Research Centre of the Science Institute of the Northwest Territories affords an opportunity for historical reconstruction and comparison. Parry's data are internally consistent. The association of colder temperatures with westerly and northerly winds, and wanner temperatures with easterly and southerly winds, is statistically significant. Temperatures are not exactly comparable between the two time periods because of differences in instrumentation, exposure, and frequency of readings. Nevertheless, in 1822–1823, November and December appear to have been cold and January to March mild compared to modern experience. Anomalously, winds were more frequently northerly (and less frequently westerly) in the latter months than in recent observations. Parry recorded two warm episodes in mid-winter, but, overall, it appears that the winter of 1822–1823 was not outside the range of modern experience.


1985 ◽  
Vol 63 (10) ◽  
pp. 2389-2394 ◽  
Author(s):  
A. A. Mohammed ◽  
Vidar Neuhof

A new genus and species of Cyclopoida is described; Arctocyclopina pagonasta is found inhabiting the arctic sea ice. Comparison is made with Cyclopina gracilis Claus, with which it may be confused.


Sign in / Sign up

Export Citation Format

Share Document