scholarly journals Cognitive heterogeneity among community-dwelling older adults with Cerebral Small Vessel Disease

2018 ◽  
Author(s):  
Ayan Dey ◽  
Vessela Stamenova ◽  
Agnes Bacopulos ◽  
Nivethika Jeyakumar ◽  
Gary R. Turner ◽  
...  

Some degree of ischemic injury to white matter tracts occurs naturally with age and is visible on magnetic resonance imaging as focal or confluent white matter hyperintensities (WMHs). Its relationship to cognition, however, remains unclear. To explore this, community-dwelling adults between the ages 55-80 years old completed structural imaging, neuropsychological testing, and questionnaires to provide objective measures and subjective experience of executive functioning. Volumetric lesion burden derived from structural MRI identified those with significant WMH burden (~10 cubic cm). Half of those recruited met this criterion and were designated as the cerebral small vessel disease (CSVD) group. Subjective complaints but not objective test scores differentiated adults with and without CSVD. Hierarchical clustering revealed two CSVD subgroups that differentiated those with impaired versus preserved executive function relative to controls. Overall these results provide some explanation for behavioural heterogeneity often observed in studies of age-related white matter changes. They also support the use of questionnaires to assess subjective complaints that may be able to detect subtle effects of pathology not evident on standardized cognitive scores.

2021 ◽  
pp. svn-2020-000813
Author(s):  
Mei-Jun Shu ◽  
Fei-Fei Zhai ◽  
Ding-Ding Zhang ◽  
Fei Han ◽  
Lixin Zhou ◽  
...  

Background and purposeThis study aimed to investigate the association of metabolic syndrome (MetS) with both intracranial atherosclerotic stenosis (ICAS) and imaging markers of cerebral small vessel disease (CSVD) in a community-based sample.MethodsThis study included 943 participants (aged 55.6±9.2 years, 36.1% male) from the community-based Shunyi cohort study. MetS was defined according to the joint interim criteria and quantified by the MetS severity Z-score. ICAS was evaluated by brain magnetic resonance angiography. The MRI markers of CSVD, including white matter hyperintensities (WMHs), lacunes, cerebral microbleeds (CMBs) and enlarged perivascular spaces (EPVS), were assessed. Multiple regression models were used to investigate the association of MetS severity Z-score with ICAS and these CSVD markers.ResultsWe found that risk of ICAS (OR=1.75, 95% CI 1.39 to 2.21, p<0.001) increased consistently with MetS severity. MetS severity was significantly associated with higher risks of WMH volume (β=0.11, 95% CI 0.01 to 0.20, p=0.02) and lacunes (OR=1.28, 95% CI 1.03 to 1.59, p=0.03) but not the presence of CMBs (OR=0.93, 95% CI 0.74 to 1.16, p=0.51) and PVS severity (EPVS in basal ganglia: OR=0.96, 95% CI 0.84 to 1.09, p=0.51 and EPVS in white matter: OR=1.09, 95% CI 0.96 to 1.23, p=0.21).ConclusionsOur findings suggest that WMH and lacunes share risk factors with atherosclerosis of the cerebral artery, whereas the impact of glucose and lipid metabolic disorder to CMB or EPVS might be weak.


2014 ◽  
Vol 34 (8) ◽  
pp. 1321-1327 ◽  
Author(s):  
Michele Cavallari ◽  
Nicola Moscufo ◽  
Dominik Meier ◽  
Pawel Skudlarski ◽  
Godfrey D Pearlson ◽  
...  

White matter hyperintensities (WMHs) and lacunes are magnetic resonance imaging hallmarks of cerebral small-vessel disease, which increase the risk of stroke, cognitive, and mobility impairment. Although most studies of cerebral small-vessel disease have focused on white matter abnormalities, the gray matter (GM) is also affected, as evidenced by frequently observed lacunes in subcortical GM. Diffusion tensor imaging (DTI) is sensitive to subtle neurodegenerative changes in deep GM structures. We explored the relationship between baseline DTI characteristics of the thalamus, caudate, and putamen, and the volume and subsequent accrual of WMHs over a 4-year period in 56 community-dwelling older (≤75 years) individuals. Baseline thalamic fractional anisotropy (FA) was an independent predictor of WMH accrual. WMH accrual also correlated with baseline lacune count and baseline WMH volume, the latter showing the strongest predictive power, explaining 27.3% of the variance. The addition of baseline thalamic FA in multivariate modeling increased this value by 70%, which explains 46.5% of the variance in WMH accrual rate. Thalamic FA might serve as a novel predictor of cerebral small-vessel disease progression in clinical settings and trials. Furthermore, our findings point to the possibility of a causal relationship between thalamic damage and the accrual of WMHs.


2020 ◽  
Vol 83 (4) ◽  
pp. 421-425
Author(s):  
Oscar H. Del Brutto ◽  
Robertino M. Mera ◽  
Aldo F. Costa ◽  
Patricia Silva ◽  
Victor J. Del Brutto

Dawson fingers are used to differentiate multiple sclerosis (MS) from other conditions that affect the subcortical white matter. However, there are no studies evaluating the presence of Dawson fingers in subjects with cerebral small vessel disease (cSVD). We aimed to assess prevalence and ­correlates of Dawson fingers in older adults with cSVD-related moderate-to-severe white matter hyperintensities (WMH). Community-dwelling older adults residing in rural Ecuador – identified by means of door-to-door surveys – underwent a brain MRI. Exams of individuals with cSVD-related moderate-to-severe WMH were reviewed with attention to the presence of Dawson fingers. Of 590 enrolled individuals, 172 (29%) had moderate-to-severe WMH. Of these, 18 (10.5%) had Dawson fingers. None had neurological manifestations suggestive of MS. Increasing age was independently associated with Dawson fingers (p = 0.017). Dawson fingers may be less specific for MS than previously thought. Concomitant damage of deep medullary veins may explain the presence of Dawson fingers in cSVD.


Author(s):  
Salvatore Rudilosso ◽  
Luis Mena ◽  
Diana Esteller ◽  
Marta Olivera ◽  
Juan José Mengual ◽  
...  

Author(s):  
E.I. Kremneva ◽  
B.M. Akhmetzyanov ◽  
L.A. Dobrynina ◽  
M.V. Krotenkova

Hemodynamic parameters of blood and cerebrospinal fluid (CSF) flow can be measured in vivo using phase-contrast MRI (PC-MRI). This opens new horizons for studying the mechanisms implicated in the development and progression of age-related cerebral small vessel disease (SVD). In this paper, we analyze associations between cerebral arterial, venous and CSF flow impairments and SVD features visible on MRI. The study was carried out in 96 patients with SVD (aged 60.91 ± 6.57 years) and 23 healthy volunteers (59.13 ± 6.56 years). The protocol of the MRI examination included routine MRI sequences (T2, FLAIR, T1, SWI, and DWI) applied to assess the severity of brain damage according to STRIVE advisory standards and PC-MRI used to quantify blood flow in the major arteries and veins of the neck, the straight and upper sagittal sinuses, and CSF flow at the aqueduct level. We analyzed the associations between linear and volumetric parameters of blood/CSF flow and the degree of brain matter damage using the Fazekas scale. We observed a reduction in tABF, stVBF, sssVBF, aqLF, Saq, and ICC values and a rise in Pi associated with WMH progression, as well as a gradual decline in tABF and an increase in Pi, Saq and ICC associated with a growing number of lacunes (р < 0.05). Patients with early (< 5) MB had lower sssVBF and stVBF rates in comparison with patients without MB; aqLF, Saq, and ICC values were elevated in patients with 5 to 10 MB, as compared to patients without MB or early (< 5) MB. The established associations between MRI findings in patients with SVD and blood/CSF flow impairments suggest the important role of mechanisms implicated in the disruption of Monro–Kellie intracranial homeostasis in promoting SVD.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Kayla Navarro ◽  
Ka-ho Wong ◽  
Majd M Ibrahim ◽  
Adam H De Havenon ◽  
Eric Goldstein

Introduction: White matter hyperintensities (WMH) are a radiographic marker for cerebral small vessel disease (CSVD). Conditions altering cerebral venous outflow such as elevated central venous pressure and right atrial pressure in individuals with cardiac valvular disease have been implicated in the development of WMH. Hypothesis: We hypothesize that increased right-heart chamber size in individuals without significant cardiac valvular disease is associated with worse WMH. Methods: A retrospective chart review of adults with a brain MRI and a 2-dimensional transthoracic echocardiogram (TTE) was performed. Worst burden of WMH by way of Fazekas score, either periventricular or deep white matter, served as the primary outcome. Statistical analysis was performed using a multivariate ordinal logistic regression model. Results: A total of 132 individuals were included. Right atrial area (OR 0.93, 95% CI 0.87 to 1.00, p = 0.0041), right ventricular internal diameter (OR 0.48, 95%CI 0.27 to 0.83, p = 0.008) and left atrial area (OR 0.93, 95%CI 0.88 to 0.98, p = 0.007) was identified as being significant. Cardiac functional markers were not significant, including tricuspid annular plane systolic excursion (OR 0.99, 95%CI 0.93 to 1.05, p = 0.670), right ventricular ejection fraction (OR 0.99, 95%CI 0.96 to 1.02, p = 0.670) and left ventricular ejection fraction (OR 0.99, 95%CI 0.96 to 1.02, p = 0.567). Analysis of isolated DWM or PVWM Fazekas scores did not find significant predictors in relation to cardiac structure or function. Conclusions: Through non-invasive cardiac imaging, we identified that cardiac structural abnormalities as opposed to functional abnormalities were associated with worse WMH. Mechanistically this may result from altered intracerebral arteriovenous coupling or a shared pathophysiologic pathway between WMH and coronary microvascular disease.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Susanna Melkas ◽  
Sami Curtze ◽  
Gerli Sibolt ◽  
Niku K Oksala ◽  
Jukka Putaala ◽  
...  

Background: Association between high homocysteine level and cerebral small-vessel disease has been implicated in cross-sectional studies, but results from longitudinal studies have been less clear. The aim of this study was to investigate whether homocysteine level at 3-months poststroke relates to the occurrence of white matter changes (WMC), the surrogate of cerebral small-vessel disease. We also investigated whether it relates to the prognosis after ischemic stroke regarding the risk of dementia at 3-months and mortality in long-term follow-up. Methods: A total of 321 consecutive acute ischemic stroke patients aged 55 to 85 were included in the study and followed up to 12 years. Plasma homocysteine level and occurrence of WMC in MRI were measured 3 months poststroke and dementia according to DSM-III was evaluated at the same time. Findings: The median homocysteine level was 13.50 μmol/l (interquartile range [IQR] 10.60-18.50 μmol/l). Total of 81 patients (25.2%) had homocysteine level above 18.50 μmol/l. In logistic regression analysis, homocysteine level above 18.50 μmol/l was not associated with severe WMC nor with dementia at 3 months poststroke. In Kaplan-Meier analysis, homocysteine level above 18.50 μmol/l was not associated with survival in 12-year follow-up. For further analysis, the group was divided in quartiles according to homocysteine level. The quartiles did not differ in occurrence of severe WMC at baseline, in the risk of dementia at 3 months, nor in the risk of mortality in 12-year follow-up. Interpretation: In our poststroke cohort homocysteine level is not associated with WMC. Further, it does not relate to impaired prognosis manifested as dementia at 3 months or mortality in 12-year follow-up.


2020 ◽  
Vol 82 (1) ◽  
pp. 275-295 ◽  
Author(s):  
T. Michael De Silva ◽  
Frank M. Faraci

Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.


Neurology ◽  
2020 ◽  
Vol 95 (21) ◽  
pp. e2845-e2853 ◽  
Author(s):  
Francis N. Saridin ◽  
Saima Hilal ◽  
Steven G. Villaraza ◽  
Anthonin Reilhac ◽  
Bibek Gyanwali ◽  
...  

ObjectiveTo evaluate the association between brain amyloid β (Aβ) and cerebral small vessel disease (CSVD) markers, as well as their joint effect on cognition, in a memory clinic study.MethodsA total of 186 individuals visiting a memory clinic, diagnosed with no cognitive impairment, cognitive impairment no dementia (CIND), Alzheimer dementia (AD), or vascular dementia were included. Brain Aβ was measured by [11C] Pittsburgh compound B–PET global standardized uptake value ratio (SUVR). CSVD markers including white matter hyperintensities (WMH), lacunes, and cerebral microbleeds (CMBs) were graded on MRI. Cognition was assessed by neuropsychological testing.ResultsAn increase in global SUVR is associated with a decrease in Mini-Mental State Examination (MMSE) in CIND and AD, as well as a decrease in global cognition Z score in AD, independent of age, education, hippocampal volume, and markers of CSVD. A significant interaction between global SUVR and WMH was found in relation to MMSE in CIND (P for interaction: 0.009), with an increase of the effect size of Aβ (β = −6.57 [−9.62 to −3.54], p < 0.001) compared to the model without the interaction term (β = −2.91 [−4.54 to −1.29], p = 0.001).ConclusionHigher global SUVR was associated with worse cognition in CIND and AD, but was augmented by an interaction between global SUVR and WMH only in CIND. This suggests that Aβ and CSVD are independent processes with a possible synergistic effect between Aβ and WMH in individuals with CIND. There was no interaction effect between Aβ and lacunes or CMBs. Therefore, in preclinical phases of AD, WMH should be targeted as a potentially modifiable factor to prevent worsening of cognitive dysfunction.


Sign in / Sign up

Export Citation Format

Share Document