scholarly journals Neural correlates of Theory of Mind in children and adults using CAToon- introducing an open-source child-friendly neuroimaging task

2020 ◽  
Author(s):  
Réka Borbás ◽  
Lynn V. Fehlbaum ◽  
Ursula Rudin ◽  
Christina Stadler ◽  
Nora Maria Raschle

Theory of Mind (ToM) or mentalizing is a basic social skill which is characterized by our ability of perspective-taking and the understanding of cognitive and emotional states of others. ToM development is essential to successfully navigate in various social contexts. The neural basis of mentalizing is well-studied in adults, however, less evidence exists in children. Potential reasons are methodological challenges, including a lack of age-appropriate fMRI paradigms. We introduce a novel child-friendly and open-source ToM fMRI task, for which accuracy and performance were evaluated behaviorally in 60 children ages three to nine (32♂). Furthermore, 27 healthy young adults (14♂; mean =25.41 years) and 33 children ages seven to thirteen (17♂; mean = 9.06 years) completed the Cognitive and Affective Theory of Mind Cartoon task (CAToon; www.jacobscenter.uzh.ch/en/research/developmental_neuroscience/downloads/catoon.html) during a fMRI session. Behavioral results indicate that children of all ages can solve the CAToon task above chance level, though reliable performance is reached around five years. Neurally, activation increases were observed for adults and children in brain regions previously associated with mentalizing, including bilateral temporoparietal junction, temporal gyri, precuneus and medial prefrontal/orbitofrontal cortices. We conclude that CAToon is suitable for developmental neuroimaging studies within an fMRI environment starting around preschool and up.

2017 ◽  
Author(s):  
Jordan E. Theriault ◽  
Adam Waytz ◽  
Larisa Heiphetz ◽  
Liane Young

The theory of mind network (ToMN) is a set of brain regions activated by a variety of social tasks. Recent work has proposed that these associations with ToMN activity may relate to a common underlying computation: processing prediction error in social contexts. The present work presents evidence consistent with this hypothesis, using a fine-grained item analysis to examine the relationship between ToMN activity and variance in stimulus features. We used an existing dataset (consisting of statements about morals, facts, and preferences) to explore variability in ToMN activity elicited by moral statements, using metaethical judgments (i.e. judgments of how fact-like/preference-like morals are) as a proxy for their predictability/support by social consensus. Study 1 validated expected patterns of behavioral judgments in our stimuli set, and Study 2 associated by-stimulus estimates of metaethical judgment with ToMN activity, showing that ToMN activity was negatively associated with objective morals and positively associated with subjective morals. Whole brain analyses indicated that these associations were strongest in bilateral temporoparietal junction (TPJ). We also observed additional by-stimulus associations with ToMN, including positive associations with the presence of a person (across morals, facts, and preferences), a negative association with agreement (among morals only), and a positive association with mental inference (in preferences only, across 3 independent measures and behavioral samples). We discuss these findings in the context of recent predictive processing models, and highlight how predictive models may facilitate new perspectives on metaethics, the centrality of morality to personal identity, and distinctions between social domains (e.g. morals vs. preferences).


2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


2019 ◽  
Vol 14 (7) ◽  
pp. 699-708 ◽  
Author(s):  
James A Dungan ◽  
Liane Young

Abstract Recent work in psychology and neuroscience has revealed important differences in the cognitive processes underlying judgments of harm and purity violations. In particular, research has demonstrated that whether a violation was committed intentionally vs accidentally has a larger impact on moral judgments of harm violations (e.g. assault) than purity violations (e.g. incest). Here, we manipulate the instructions provided to participants for a moral judgment task to further probe the boundary conditions of this intent effect. Specifically, we instructed participants undergoing functional magnetic resonance imaging to attend to either a violator’s mental states (why they acted that way) or their low-level behavior (how they acted) before delivering moral judgments. Results revealed that task instructions enhanced rather than diminished differences between how harm and purity violations are processed in brain regions for mental state reasoning or theory of mind. In particular, activity in the right temporoparietal junction increased when participants were instructed to attend to why vs how a violator acted to a greater extent for harm than for purity violations. This result constrains the potential accounts of why intentions matter less for purity violations compared to harm violations and provide further insight into the differences between distinct moral norms.


2013 ◽  
Vol 25 (3) ◽  
pp. 401-420 ◽  
Author(s):  
Shu-Jen Kung ◽  
Joyce L. Chen ◽  
Robert J. Zatorre ◽  
Virginia B. Penhune

Humans are able to find and tap to the beat of musical rhythms varying in complexity from children's songs to modern jazz. Musical beat has no one-to-one relationship with auditory features—it is an abstract perceptual representation that emerges from the interaction between sensory cues and higher-level cognitive organization. Previous investigations have examined the neural basis of beat processing but have not tested the core phenomenon of finding and tapping to the musical beat. To test this, we used fMRI and had musicians find and tap to the beat of rhythms that varied from metrically simple to metrically complex—thus from a strong to a weak beat. Unlike most previous studies, we measured beat tapping performance during scanning and controlled for possible effects of scanner noise on beat perception. Results showed that beat finding and tapping recruited largely overlapping brain regions, including the superior temporal gyrus (STG), premotor cortex, and ventrolateral PFC (VLPFC). Beat tapping activity in STG and VLPFC was correlated with both perception and performance, suggesting that they are important for retrieving, selecting, and maintaining the musical beat. In contrast BG activity was similar in all conditions and was not correlated with either perception or production, suggesting that it may be involved in detecting auditory temporal regularity or in associating auditory stimuli with a motor response. Importantly, functional connectivity analyses showed that these systems interact, indicating that more basic sensorimotor mechanisms instantiated in the BG work in tandem with higher-order cognitive mechanisms in PFC.


2017 ◽  
Author(s):  
Lily Tsoi ◽  
James A Dungan ◽  
Alek Chakroff ◽  
Liane Young

Although harm primarily elicits thoughts of physical injuries, harm can also take the form of negative psychological impact. Using functional magnetic resonance imaging (fMRI), we examined the extent to which moral judgments of physical and psychological harms are processed similarly, focusing on brain regions implicated in mental state reasoning or theory of mind, a key cognitive process for moral judgment. Univariate analyses reveal similar levels of theory of mind processing for psychological and physical harms, though multivariate pattern analyses (MVPA) reveal sensitivity to the psychological/physical distinction in two regions implicated in theory of mind: the right temporoparietal junction and the precuneus. Moreover, while there were no differences in neurotypical adults and adults with autism spectrum disorder with regard to neural activity related to theory of mind, there was a group difference in the recruitment of the anterior cingulate cortex for psychological versus physical harms. Altogether, these results reveal sensitivity within regions implicated in theory of mind to the physical / psychological distinction as well as neural processes that capture clinically relevant differences in evaluations of psychological harms versus physical harms.


2011 ◽  
Vol 366 (1571) ◽  
pp. 1684-1701 ◽  
Author(s):  
Andrew J. Calder ◽  
Michael Ewbank ◽  
Luca Passamonti

Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general.


2016 ◽  
Vol 33 (S1) ◽  
pp. S368-S368
Author(s):  
C. Frank

IntroductionTheory of mind (ToM) is the ability to predict behaviors of others in terms of their underlying mental states. It is carried out in order to make sense of and predict behavior. Impairments in ToM have been found in many psychiatric/neurological disorders including schizophrenia and autism spectrum disorders. Previous research has indicated sex difference in ToM development. Previous research has also found some differences in the neural basis of ToM.Objectives/aimsAn objective/aim of the present study was to examine possible sex differences in the neural mechanism associated with ToM development. Another objective was to examine the neural basis of ToM that is shared by both sexes throughout development.MethodsThirty-two adults (16 women) and 24 children (12 girls) were assessed with fMRI while performing a false belief (FB) task.ResultsDuring the ToM relative to non-ToM condition, adults and children of both sexes showed increased activity in the medial prefrontal cortex (mPFC) and the temporo-parietal junction (TPJ). Both boys and girls recruited more brain regions than adults. Moreover, children employed structures involved in the human mirror neuron system (hMNS) more than adults. More specifically, boys recruited the inferior frontal gyrus (IFG) more than men, while girls recruited the precentral gyrus more than women.ConclusionsThese results suggest that boys/men and girls/women employ different brain regions for ToM during development.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2019 ◽  
Author(s):  
Matan Mazor ◽  
Karl J. Friston ◽  
Stephen M. Fleming

Being confident in whether a stimulus is present or absent (a detection judgment) is qualitatively distinct from being confident in the identity of that stimulus (a discrimination judgment). In particular, in detection, evidence can only be available for the presence, not the absence, of a target object. This asymmetry suggests that higher-order cognitive and neural processes may be required for confidence in detection, and more specifically, in judgments about absence. In a within-subject, pre-registered and performance-matched fMRI design, we observed quadratic confidence effects in frontopolar cortex for detection but not discrimination. Furthermore, in the right temporoparietal junction, confidence effects were enhanced for judgments of target absence compared to judgments of target presence. We interpret these findings as reflecting qualitative differences between the neural basis of metacognitive evaluation of detection and discrimination, potentially in line with counterfactual or higher-order models of confidence formation in detection.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Matan Mazor ◽  
Karl J Friston ◽  
Stephen M Fleming

Being confident in whether a stimulus is present or absent (a detection judgment) is qualitatively distinct from being confident in the identity of that stimulus (a discrimination judgment). In particular, in detection, evidence can only be available for the presence, not the absence, of a target object. This asymmetry suggests that higher-order cognitive and neural processes may be required for confidence in detection, and more specifically, in judgments about absence. In a within-subject, pre-registered and performance-matched fMRI design, we observed quadratic confidence effects in frontopolar cortex for detection but not discrimination. Furthermore, in the right temporoparietal junction, confidence effects were enhanced for judgments of target absence compared to judgments of target presence. We interpret these findings as reflecting qualitative differences between a neural basis for metacognitive evaluation of detection and discrimination, potentially in line with counterfactual or higher-order models of confidence formation in detection.


2019 ◽  
Vol 26 (1) ◽  
pp. 5-38 ◽  
Author(s):  
Ivan Enrici ◽  
Bruno G. Bara ◽  
Mauro Adenzato

Abstract Theory of Mind (ToM) is a neurocognitive system that allows the perceiver to attribute mental states, such as intentions, beliefs, or feelings, to others’ actions. The aim of the present work is to analyse the engagement of the ToM system in communication, in particular, in communicative intention processing. To this aim, we propose an Intention Processing Network (IPN) with its own principles and mechanisms, that is, a brain network differentially engaged according to the complex intertwining of the context, goal, and action involved. According to our IPN model, a set of brain regions of the ToM system (i.e. left and right temporoparietal junction, precuneus, and medial prefrontal cortex) are differentially involved in comprehending different types of intention, such as private or social intentions. We provide independent and convergent evidence on the role of the IPN model in communicative intention processing and we show that the engagement of the IPN does not depend upon the communicative means used, that is, written language, auditory language, or gesture. Evidence deriving from different experimental paradigms, including neuroimaging, lesion, neurodegenerative, and brain stimulation studies are discussed. In our view, this evidence establishes a link between ToM and pragmatics studies and suggests the role of intention processing as a core feature of human communication.


Sign in / Sign up

Export Citation Format

Share Document