scholarly journals A Quantitative Synthesis of Early Language Acquisition Using Meta-Analysis

Author(s):  
Molly Lewis ◽  
Mika Braginsky ◽  
Sho Tsuji ◽  
Christina Bergmann ◽  
Page Elizabeth Piccinini ◽  
...  

To acquire a language, children must learn a range of skills, from the sounds of their language to the meanings of words. These skills are typically studied in isolation in separate research programs, but there is a growing body of evidence that these skills may depend on each other in acquisition (e.g., Feldman, Myers, White, Griffiths, & Morgan, 2013; Johnson, Demuth, Jones, & Black, 2010; Shukla, White, & Aslin, 2011). We suggest that the meta-analytic method can support the process of building theories that take a systems-level perspective, as well as provide a tool for detecting bias in a literature. Here we present meta-analyses of 12 phenomena in language acquisition, with over 800 effect sizes. We find that the language acquisition literature overall has a high degree of evidential value. We then present a quantitative synthesis of language acquisition phenomena that suggests interactivity across the system.

2020 ◽  
Author(s):  
Daniel S Quintana

The neuropeptide oxytocin has attracted substantial research interest for its role in behaviour and cognition; however, the evidence for its effects have been mixed. Meta-analysis is viewed as the gold-standard for synthesizing evidence, but the evidential value of a meta-analysis is dependent on the evidential value of the studies it synthesizes, and the analytical approaches used to derive conclusions. To assess the evidential value of oxytocin administration meta-analyses, this study calculated the statistical power of 107 studies from 35 meta-analyses and assessed the statistical equivalence of reported results. The mean statistical power across all studies was 12.2% and there has been no noticeable improvement in power over an eight-year period. None of the 26 non-significant meta-analyses were statistically equivalent, assuming a smallest effect size of interest of 0.1. Altogether, most oxytocin treatment study designs are statistically underpowered to either detect or reject a wide range of effect sizes that scholars may find worthwhile.


2020 ◽  
Author(s):  
Jonathan Z Bakdash ◽  
Laura Ranee Marusich ◽  
Jared Kenworthy ◽  
Elyssa Twedt ◽  
Erin Zaroukian

Whether in meta-analysis or single experiments, selecting results based on statistical significance leads to overestimated effect sizes, impeding falsification. We critique a quantitative synthesis that used significance to score and select previously published effects for situation awareness-performance associations (Endsley, 2019). How much does selection using statistical significance quantitatively impact results in a meta-analytic context? We evaluate and compare results using significance-filtered effects versus analyses with all effects as-reported. Endsley reported high predictiveness scores and large positive mean correlations but used atypical methods: the hypothesis was used to select papers and effects. Papers were assigned the maximum predictiveness scores if they contained at-least-one significant effect, yet most papers reported multiple effects, and the number of non-significant effects did not impact the score. Thus, the predictiveness score was rarely less than the maximum. In addition, only significant effects were included in Endsley’s quantitative synthesis. Filtering excluded half of all reported effects, with guaranteed minimum effect sizes based on sample size. Results for filtered compared to as-reported effects clearly diverged. Compared to the mean of as-reported effects, the filtered mean was overestimated by 56%. Furthermore, 92% (or 222 out of 241) of the as-reported effects were below the mean of filtered effects. We conclude that outcome-dependent selection of effects is circular, predetermining results and running contrary to the purpose of meta-analysis. Instead of using significance to score and filter effects, meta-analyses should follow established research practices.


2021 ◽  
Author(s):  
Jonathan Z Bakdash ◽  
Laura Ranee Marusich ◽  
Jared Kenworthy ◽  
Elyssa Twedt ◽  
Erin Zaroukian

Whether in meta-analysis or single experiments, selecting results based on statistical significance leads to overestimated effect sizes, impeding falsification. We critique a quantitative synthesis that used significance to score and select previously published effects for situation awareness-performance associations (Endsley, 2019). How much does selection using statistical significance quantitatively impact results in a meta-analytic context? We evaluate and compare results using significance-filtered effects versus analyses with all effects as-reported. Endsley reported high predictiveness scores and large positive mean correlations but used atypical methods: the hypothesis was used to select papers and effects. Papers were assigned the maximum predictiveness scores if they contained at-least-one significant effect, yet most papers reported multiple effects, and the number of non-significant effects did not impact the score. Thus, the predictiveness score was rarely less than the maximum. In addition, only significant effects were included in Endsley’s quantitative synthesis. Filtering excluded half of all reported effects, with guaranteed minimum effect sizes based on sample size. Results for filtered compared to as-reported effects clearly diverged. Compared to the mean of as-reported effects, the filtered mean was overestimated by 56%. Furthermore, 92% (or 222 out of 241) of the as-reported effects were below the mean of filtered effects. We conclude that outcome-dependent selection of effects is circular, predetermining results and running contrary to the purpose of meta-analysis. Instead of using significance to score and filter effects, meta-analyses should follow established research practices.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jonathan Z. Bakdash ◽  
Laura R. Marusich ◽  
Jared B. Kenworthy ◽  
Elyssa Twedt ◽  
Erin G. Zaroukian

Whether in meta-analysis or single experiments, selecting results based on statistical significance leads to overestimated effect sizes, impeding falsification. We critique a quantitative synthesis that used significance to score and select previously published effects for situation awareness-performance associations (Endsley, 2019). How much does selection using statistical significance quantitatively impact results in a meta-analytic context? We evaluate and compare results using significance-filtered effects versus analyses with all effects as-reported. Endsley reported high predictiveness scores and large positive mean correlations but used atypical methods: the hypothesis was used to select papers and effects. Papers were assigned the maximum predictiveness scores if they contained at-least-one significant effect, yet most papers reported multiple effects, and the number of non-significant effects did not impact the score. Thus, the predictiveness score was rarely less than the maximum. In addition, only significant effects were included in Endsley’s quantitative synthesis. Filtering excluded half of all reported effects, with guaranteed minimum effect sizes based on sample size. Results for filtered compared to as-reported effects clearly diverged. Compared to the mean of as-reported effects, the filtered mean was overestimated by 56%. Furthermore, 92% (or 222 out of 241) of the as-reported effects were below the mean of filtered effects. We conclude that outcome-dependent selection of effects is circular, predetermining results and running contrary to the purpose of meta-analysis. Instead of using significance to score and filter effects, meta-analyses should follow established research practices.


2020 ◽  
Vol 228 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Michael Kossmeier ◽  
Ulrich S. Tran ◽  
Martin Voracek

Abstract. Currently, dedicated graphical displays to depict study-level statistical power in the context of meta-analysis are unavailable. Here, we introduce the sunset (power-enhanced) funnel plot to visualize this relevant information for assessing the credibility, or evidential value, of a set of studies. The sunset funnel plot highlights the statistical power of primary studies to detect an underlying true effect of interest in the well-known funnel display with color-coded power regions and a second power axis. This graphical display allows meta-analysts to incorporate power considerations into classic funnel plot assessments of small-study effects. Nominally significant, but low-powered, studies might be seen as less credible and as more likely being affected by selective reporting. We exemplify the application of the sunset funnel plot with two published meta-analyses from medicine and psychology. Software to create this variation of the funnel plot is provided via a tailored R function. In conclusion, the sunset (power-enhanced) funnel plot is a novel and useful graphical display to critically examine and to present study-level power in the context of meta-analysis.


2019 ◽  
Author(s):  
Shinichi Nakagawa ◽  
Malgorzata Lagisz ◽  
Rose E O'Dea ◽  
Joanna Rutkowska ◽  
Yefeng Yang ◽  
...  

‘Classic’ forest plots show the effect sizes from individual studies and the aggregate effect from a meta-analysis. However, in ecology and evolution meta-analyses routinely contain over 100 effect sizes, making the classic forest plot of limited use. We surveyed 102 meta-analyses in ecology and evolution, finding that only 11% use the classic forest plot. Instead, most used a ‘forest-like plot’, showing point estimates (with 95% confidence intervals; CIs) from a series of subgroups or categories in a meta-regression. We propose a modification of the forest-like plot, which we name the ‘orchard plot’. Orchard plots, in addition to showing overall mean effects and CIs from meta-analyses/regressions, also includes 95% prediction intervals (PIs), and the individual effect sizes scaled by their precision. The PI allows the user and reader to see the range in which an effect size from a future study may be expected to fall. The PI, therefore, provides an intuitive interpretation of any heterogeneity in the data. Supplementing the PI, the inclusion of underlying effect sizes also allows the user to see any influential or outlying effect sizes. We showcase the orchard plot with example datasets from ecology and evolution, using the R package, orchard, including several functions for visualizing meta-analytic data using forest-plot derivatives. We consider the orchard plot as a variant on the classic forest plot, cultivated to the needs of meta-analysts in ecology and evolution. Hopefully, the orchard plot will prove fruitful for visualizing large collections of heterogeneous effect sizes regardless of the field of study.


2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


2021 ◽  
Vol 5 (1) ◽  
pp. e100135
Author(s):  
Xue Ying Zhang ◽  
Jan Vollert ◽  
Emily S Sena ◽  
Andrew SC Rice ◽  
Nadia Soliman

ObjectiveThigmotaxis is an innate predator avoidance behaviour of rodents and is enhanced when animals are under stress. It is characterised by the preference of a rodent to seek shelter, rather than expose itself to the aversive open area. The behaviour has been proposed to be a measurable construct that can address the impact of pain on rodent behaviour. This systematic review will assess whether thigmotaxis can be influenced by experimental persistent pain and attenuated by pharmacological interventions in rodents.Search strategyWe will conduct search on three electronic databases to identify studies in which thigmotaxis was used as an outcome measure contextualised to a rodent model associated with persistent pain. All studies published until the date of the search will be considered.Screening and annotationTwo independent reviewers will screen studies based on the order of (1) titles and abstracts, and (2) full texts.Data management and reportingFor meta-analysis, we will extract thigmotactic behavioural data and calculate effect sizes. Effect sizes will be combined using a random-effects model. We will assess heterogeneity and identify sources of heterogeneity. A risk-of-bias assessment will be conducted to evaluate study quality. Publication bias will be assessed using funnel plots, Egger’s regression and trim-and-fill analysis. We will also extract stimulus-evoked limb withdrawal data to assess its correlation with thigmotaxis in the same animals. The evidence obtained will provide a comprehensive understanding of the strengths and limitations of using thigmotactic outcome measure in animal pain research so that future experimental designs can be optimised. We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines and disseminate the review findings through publication and conference presentation.


2016 ◽  
Vol 26 (4) ◽  
pp. 364-368 ◽  
Author(s):  
P. Cuijpers ◽  
E. Weitz ◽  
I. A. Cristea ◽  
J. Twisk

AimsThe standardised mean difference (SMD) is one of the most used effect sizes to indicate the effects of treatments. It indicates the difference between a treatment and comparison group after treatment has ended, in terms of standard deviations. Some meta-analyses, including several highly cited and influential ones, use the pre-post SMD, indicating the difference between baseline and post-test within one (treatment group).MethodsIn this paper, we argue that these pre-post SMDs should be avoided in meta-analyses and we describe the arguments why pre-post SMDs can result in biased outcomes.ResultsOne important reason why pre-post SMDs should be avoided is that the scores on baseline and post-test are not independent of each other. The value for the correlation should be used in the calculation of the SMD, while this value is typically not known. We used data from an ‘individual patient data’ meta-analysis of trials comparing cognitive behaviour therapy and anti-depressive medication, to show that this problem can lead to considerable errors in the estimation of the SMDs. Another even more important reason why pre-post SMDs should be avoided in meta-analyses is that they are influenced by natural processes and characteristics of the patients and settings, and these cannot be discerned from the effects of the intervention. Between-group SMDs are much better because they control for such variables and these variables only affect the between group SMD when they are related to the effects of the intervention.ConclusionsWe conclude that pre-post SMDs should be avoided in meta-analyses as using them probably results in biased outcomes.


2012 ◽  
Vol 9 (5) ◽  
pp. 610-620 ◽  
Author(s):  
Thomas A Trikalinos ◽  
Ingram Olkin

Background Many comparative studies report results at multiple time points. Such data are correlated because they pertain to the same patients, but are typically meta-analyzed as separate quantitative syntheses at each time point, ignoring the correlations between time points. Purpose To develop a meta-analytic approach that estimates treatment effects at successive time points and takes account of the stochastic dependencies of those effects. Methods We present both fixed and random effects methods for multivariate meta-analysis of effect sizes reported at multiple time points. We provide formulas for calculating the covariance (and correlations) of the effect sizes at successive time points for four common metrics (log odds ratio, log risk ratio, risk difference, and arcsine difference) based on data reported in the primary studies. We work through an example of a meta-analysis of 17 randomized trials of radiotherapy and chemotherapy versus radiotherapy alone for the postoperative treatment of patients with malignant gliomas, where in each trial survival is assessed at 6, 12, 18, and 24 months post randomization. We also provide software code for the main analyses described in the article. Results We discuss the estimation of fixed and random effects models and explore five options for the structure of the covariance matrix of the random effects. In the example, we compare separate (univariate) meta-analyses at each of the four time points with joint analyses across all four time points using the proposed methods. Although results of univariate and multivariate analyses are generally similar in the example, there are small differences in the magnitude of the effect sizes and the corresponding standard errors. We also discuss conditional multivariate analyses where one compares treatment effects at later time points given observed data at earlier time points. Limitations Simulation and empirical studies are needed to clarify the gains of multivariate analyses compared with separate meta-analyses under a variety of conditions. Conclusions Data reported at multiple time points are multivariate in nature and are efficiently analyzed using multivariate methods. The latter are an attractive alternative or complement to performing separate meta-analyses.


Sign in / Sign up

Export Citation Format

Share Document