OnPoint: A package for online experiments in motor control and motor learning

2020 ◽  
Author(s):  
Jonathan Sanching Tsay ◽  
Alan S. Lee ◽  
Guy Avraham ◽  
Darius E. Parvin ◽  
Jeremy Ho ◽  
...  

Motor learning experiments are typically run in-person, exploiting finely calibrated setups (digitizing tablets, robotic manipulandum, full VR displays) that provide high temporal and spatial resolution. However, these experiments come at a cost, not limited to the one-time expense of purchasing equipment but also the substantial time devoted to recruiting participants and administering the experiment. Moreover, exceptional circumstances that limit in-person testing, such as a global pandemic, may halt research progress. These limitations of in-person motor learning research have motivated the design of OnPoint, an open-source software package for motor control and motor learning researchers. As with all online studies, OnPoint offers an opportunity to conduct large-N motor learning studies, with potential applications to do faster pilot testing, replicate previous findings, and conduct longitudinal studies (GitHub repository: https://github.com/alan-s-lee/OnPoint).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangfan Xu ◽  
Xianqun Fan ◽  
Yang Hu

AbstractEnzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ki Young Lee ◽  
Kwang Wook Yoo ◽  
Youngsun Choi ◽  
Gunpyo Kim ◽  
Sangmo Cheon ◽  
...  

Abstract The topological properties of photonic microstructures are of great interest because of their experimental feasibility for fundamental study and potential applications. Here, we show that robust guided-mode-resonance states exist in photonic domain-wall structures whenever the complex photonic band structures involve certain topological correlations in general. Using the non-Hermitian photonic analogy of the one-dimensional Dirac equation, we derive essential conditions for photonic Jackiw-Rebbi-state resonances taking advantage of unique spatial confinement and spot-like spectral features which are remarkably robust against random parametric errors. Therefore, the proposed resonance configuration potentially provides a powerful method to create compact and stable photonic resonators for various applications in practice.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


Author(s):  
Luigia Mocerino ◽  
Franco Quaranta

The scope of this work is to try to quantify the reduction of emissions due to COVID-19; an analysis covering the entire port of Naples will be presented. The explosion of the global pandemic from SARS-CoV-2 led to the adoption of local and global countermeasures aimed at containing contagions. The transportation sector, and in particular the passenger moving sector, was deeply affected; this almost total block of movements between regions and countries if, on the one hand, seriously slowed the economy, on the other, it drastically reduced the emissions on a global and local scale. In this work, the case study of the cruise ships berthed at the Maritime Station (Stazione Marittima) in the port of Naples is examined. The traffic of cruise ships during the lockdown and in the immediately following months was analysed and compared first with respect to the calendars scheduled for the same period and then with respect to the same months of 2019. The reduction in number of cruise ships and passengers were analysed and compared to the previous trends. The vessels collected, for 2019 and 2020 (both those that arrived and those that suffered the effects of the movement block) were subsequently characterized in terms of power and speed. Finally, an estimate of the emissions of NOX, SOX, CO2 produced and saved was carried out. The 2020 results will be compared with the hypothetical emissions that would have occurred in the absence of the lockdown and with those of the same period of the previous year.


2014 ◽  
Vol 10 ◽  
pp. 641-652 ◽  
Author(s):  
Richard J Ingham ◽  
Claudio Battilocchio ◽  
Joel M Hawkins ◽  
Steven V Ley

Here we describe the use of a new open-source software package and a Raspberry Pi® computer for the simultaneous control of multiple flow chemistry devices and its application to a machine-assisted, multi-step flow preparation of pyrazine-2-carboxamide – a component of Rifater®, used in the treatment of tuberculosis – and its reduced derivative piperazine-2-carboxamide.


2018 ◽  
Vol 6 (40) ◽  
pp. 10672-10686 ◽  
Author(s):  
Qing Zhang ◽  
Huanli Dong ◽  
Wenping Hu

This article places special focus on the recent research progress of the EP method in synthesizing CPs. In particular, their potential applications as 2D CPs are summarized, with a basic introduction of the EP method, its use in synthesizing CPs as well as the promising applications of the obtained CPs in different fields. Discussions of current challenges in this field and future research directions are also given.


2018 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Li Han

AbstractThe harms of seasonal flu and global pandemic influenza have generally attracted attention. However, the currently administered influenza drugs and flu vaccines have certain limitations. Since the discovery of the small interfering RNA (siRNA) and its mediated RNA interference process, this molecule has been widely used in the study of anti-influenza viral infections because of its high specificity and strong selectivity. The results provided new concepts for the prevention and treatment of influenza virus. However, the siRNA still faces an enormous challenge despite extensive studies on this molecule. The research progress of siRNA in anti-influenza viral infection was reviewed in this study.


Author(s):  
Akira Yamada ◽  
Fuminori Niikura ◽  
Koji Ikuta

Biodegradable polymers are employed in medicine and its further application is expected with eagerness. But the lack of an appropriate processing method retards the progress. To overcome this problem, we have developped a novel three-dimensional microfabrication system. The system design allows us the processing of the free three-dimensional micro-level forms by stacking up melted polymers from the nozzle. Different from the conventional method, we adopted a batch process to supply materials in order to eliminate the prior process that required toxic solvents. In addition, it is possible to handle almost all biodegradable thermoplastic resins by adopting this system. A single layer from the piled-up layers of extruded lines was observed to evaluate the resolution. The lateral and depth resolutions attained are 40 μm and 45 μm, respectively. Biodegradable polymers enable three-dimensional microstructures such as micro-pipes, micro-bends, and micro-coil springs to be manufactured in less than 15 min. The biocompatibility of the newly fabricated structure was evaluated using a cell line (PC12). For this purpose, a small vessel, with a transparent base, was fabricated using PLA and cells were cultivated in it. The results were then compared with the results obtained using the standard method. The mechanical strength of our microstructures was evaluated using a tensile strength test. The tensile strength of the microstructure was lower than the one obtained from the conventional method, but has enough strength for fabrication of medical devices. Our system renders it possible to produce toxic-free, as well as transparent and leakage-free devices. Our system is expected to have potential applications in optimum design and fabrication of implantable devices, especially in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document