Electrochemical polymerization for two-dimensional conjugated polymers

2018 ◽  
Vol 6 (40) ◽  
pp. 10672-10686 ◽  
Author(s):  
Qing Zhang ◽  
Huanli Dong ◽  
Wenping Hu

This article places special focus on the recent research progress of the EP method in synthesizing CPs. In particular, their potential applications as 2D CPs are summarized, with a basic introduction of the EP method, its use in synthesizing CPs as well as the promising applications of the obtained CPs in different fields. Discussions of current challenges in this field and future research directions are also given.

2021 ◽  
Vol 22 (23) ◽  
pp. 12901
Author(s):  
Xiaojing Zhang ◽  
Yin Jia ◽  
Yang Liu ◽  
Duanfen Chen ◽  
Yibo Luo ◽  
...  

Self-incompatibility affects not only the formation of seeds, but also the evolution of species diversity. A robust understanding of the molecular mechanisms of self-incompatibility is essential for breeding efforts, as well as conservation biology research. In recent years, phenotypic and multiple omics studies have revealed that self-incompatibility in Orchidaceae is mainly concentrated in the subfamily Epidendroideae, and the self-incompatibility phenotypes are diverse, even in the same genus, and hormones (auxin and ethylene), and new male and female determinants might be involved in SI response. This work provides a good foundation for future studies of the evolution and molecular mechanisms of self-incompatibility. We review recent research progress on self-incompatibility in orchids at the morphological, physiological, and molecular levels, provide a general overview of self-incompatibility in orchids, and propose future research directions.


2021 ◽  
Vol 15 (1) ◽  
pp. 69-82
Author(s):  
Mei Wang ◽  
Zheng Gong ◽  
Xinxin Zhao ◽  
Wanjun Yu ◽  
Feng Huang ◽  
...  

Gastric cancer (GC) is a common digestive malignancy with a high-ranking morbidity and mortality. Therefore, it is urgent to identify novel indicators and develop new strategies for clinical diagnosis and treatment of GC. As a type of noncoding RNA, circular RNAs (circRNAs) have received increased attention in GC during recent years. To more comprehensively understand current research progress on circRNAs in GC, in this review, we introduce basic knowledge of circRNAs, summarize abnormally expressed circRNAs and discuss their functions and regulatory molecular mechanisms in GC. Then, we review potential applications of circRNAs for GC diagnosis, prognosis and treatment. Finally, we conclude by highlighting major advancements of circRNAs in GC research, and we discuss existing challenges and possible future research directions of GC-associated circRNAs.


2021 ◽  
Vol 11 (15) ◽  
pp. 7016
Author(s):  
Pawel S. Dabrowski ◽  
Cezary Specht ◽  
Mariusz Specht ◽  
Artur Makar

The theory of cartographic projections is a tool which can present the convex surface of the Earth on the plane. Of the many types of maps, thematic maps perform an important function due to the wide possibilities of adapting their content to current needs. The limitation of classic maps is their two-dimensional nature. In the era of rapidly growing methods of mass acquisition of spatial data, the use of flat images is often not enough to reveal the level of complexity of certain objects. In this case, it is necessary to use visualization in three-dimensional space. The motivation to conduct the study was the use of cartographic projections methods, spatial transformations, and the possibilities offered by thematic maps to create thematic three-dimensional map imaging (T3DMI). The authors presented a practical verification of the adopted methodology to create a T3DMI visualization of the marina of the National Sailing Centre of the Gdańsk University of Physical Education and Sport (Poland). The profiled characteristics of the object were used to emphasize the key elements of its function. The results confirmed the increase in the interpretative capabilities of the T3DMI method, relative to classic two-dimensional maps. Additionally, the study suggested future research directions of the presented solution.


2021 ◽  
Vol 1036 ◽  
pp. 20-31
Author(s):  
Jun Jie Ye ◽  
Zhi Rong He ◽  
Kun Gang Zhang ◽  
Yu Qing Du

Ti-Ni based shape memory alloys (SMAs) are of excellent shape memory effect, superelasticity and damping property. These properties of the alloys can be fully displayed only after proper heat treatment. In this paper, the research progresses of the effect of the heat treatment on the microstructure, phase composition, phase transformation behaviors and shape memory properties in Ti-Ni based SMAs are reviewed, the correlation influence mechanism is summarized, and the future research directions in this field are pointed out. It is expected to provide reference for the development of Ti-Ni based SMAs and their heat treatment technologies.


Author(s):  
Rachel S Rauvola ◽  
Cort W Rudolph ◽  
Lena K Ebbert ◽  
Hannes Zacher

Abstract Person–environment (PE) fit, a broad constellation of constructs related to an individual’s congruence with their work environment, is of great interest to research and practice given its implications for positive work outcomes and sustainable employment. Informed by a life-span perspective, particularly socioemotional selectivity theory, the present studies investigated potential age-conditional effects of PE fit types (person–job [PJ], person–group [PG], and person–organization [PO] fit) on work satisfaction. In two studies, a policy-capturing approach was used in which participants read a series of work scenario vignettes and then rated their hypothetical work satisfaction in these scenarios. In Study 1, these cues varied by fit type and levels of fit (i.e., low, medium, high), while in Study 2, they varied by fit type and level in addition to goal type (i.e., socioemotional, instrumental). It was expected that PJ fit would be more important for work satisfaction of relatively younger participants and PO fit would be more important for relatively older participants; potential age-conditional PG effects were explored as well. Findings provided support for the assumption that PO fit is more important for older individuals’ work satisfaction, while PJ and PG fit manifested mixed results; moreover, we did not find significant effects of goal type as anticipated in Study 2. These results are interpreted in light of existing theory, and future research directions and potential applications are discussed.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Huixin Wu ◽  
Feng Wang

Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions.


2020 ◽  
Author(s):  
Levan Bokeria ◽  
Richard Henson ◽  
Robert M Mok

Much of higher cognition involves abstracting away from sensory details and thinking conceptually. How do our brains learn and represent such abstract concepts? Recent work has proposed that neural representations in the medial temporal lobe (MTL), which are involved in spatial navigation, might also support learning of higher-level knowledge structures. These ideas are supported by findings that neural representations in MTL, as well as medial prefrontal cortex (mPFC), are involved in “navigation” of simple two-dimensional spaces of visual stimuli, social spaces and odor spaces. A recent study in the Journal of Neuroscience by Viganò & Piazza (2020) takes this research further by suggesting that entorhinal cortex (EHC) and mPFC are capable of mapping not only sensory spaces, but also abstract semantic spaces. In this opinion piece, we first describe the paradigm and results of the study, as well as the importance of the findings for the field. We then raise several methodological concerns and suggest changes to the paradigm to address these issues. Finally, we discuss potential future research directions including experimental and modelling approaches to tackle outstanding questions in the field.


Author(s):  
Hee Wook Yoon ◽  
Young Hoon Cho ◽  
Ho Bum Park

Recently, graphene-based membranes have been extensively studied, represented by two distinct research directions: (i) creating pores in graphene basal plane and (ii) engineering nanochannels in graphene layers. Most simulation results predict that porous graphene membranes can be much more selective and permeable than current existing membranes, also evidenced by some experimental results for gas separation and desalination. In addition, graphene oxide has been widely investigated in layered membranes with two-dimensional nanochannels, showing very intriguing separation properties. This review will cover state-of-the-art of graphene-based membranes, and also provide a material guideline on future research directions suitable for practical membrane applications.


Author(s):  
Mohammed Fisal Abu Khaled

This chapter intends to document the various ways that the nascent technology, blockchain, and other forms of distributed ledger technology (DLT) can provide both increased and decreased risk as well as offer FinTech industries a fertile environment to pursue key technological advancements that can help shape almost every facet of the financial world. Issues of trust, transparency, and privacy will be explored as it pertains to the execution of blockchain technology within financial sectors. Strengths and weakness will be explored within regulations, legal environments, risk management, and the environment. Based on the findings of a comprehensive literature review, possible solutions and recommendations will be provided for governmental agencies, regulators, and users of financial services with a special focus on Islamic FinTech. Future research directions will also be shared that can assist Islamic FinTech.


Sign in / Sign up

Export Citation Format

Share Document