Towards a Brain-like Memory for Cognitive Robots. PhD Dissertation, University of Genova, Genova, Italy

2018 ◽  
Author(s):  
Ajaz Ahmad Bhat

The most striking feature of any cognitive system is its ability to keep learning cumulatively and exploit its experiences prospectively to anticipate, reason and produce goal-oriented behaviors. At the core of this intriguing capability lies our memory. Every touch, sound, sight, taste triggers our memory, enabling us to remember and flexibly connect our past experiences, with the available present to the possible future. While emerging trends in neurosciences are rapidly enriching our understanding of the functional organization of memory in the brain, a prospective memory architecture is also a central design feature necessary if robots are to truly become commonplace assistants in numerous application domains (domestic, industrial, others) and in the complexity of the environments we inhabit and create (where neither everything can be known nor can everything be experienced). Hence, with the central premise that cognition is constructive manipulation of memory, this thesis proposes a novel brain guided perspective on the design of cognitive architectures for cumulatively developing systems. Set up in the context of several experiments from animal and infant cognition reenacted on the iCub humanoid, a principled framework for cumulative learning of actions, skills, affordances and cause-effect relations through multiple streams (imitation, exploration, linguistic inputs) is proposed. How such diverse experiences of the robot learnt in past are recalled based on present context, combined with explorative actions to learn something new, creatively connected to generate novel behaviors in the context of sought goals is demonstrated through several tasks. The proposed integrated machinery provides for a shared computational basis for recalling of the past and simulation of the future in line with the emerging trends from neuroscience (like the brain’s default mode network). A notable transition further is the porting of the framework developed on iCub humanoid to real world industrial settings in tasks like assembly and manufacturing (facilitating runtime reasoning and quick switchover to novel assembly tasks). In this sense, the proposed architecture brings together the fields of Robotics, Developmental Psychology, and Neuroscience to craft cognitive and adaptable End User Applications while at the same time provides insights into the functional organization of the brain. In parallel, it lays the foundation for a new generation of cognitive architectures that are domain agnostic (i.e. support open-ended learning), partially embodiment agnostic (i.e. are configurable to new robotic platforms), partially self-driven (i.e. can generate their own internal goals) and brain guided.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rossana Mastrandrea ◽  
Fabrizio Piras ◽  
Andrea Gabrielli ◽  
Nerisa Banaj ◽  
Guido Caldarelli ◽  
...  

AbstractNetwork neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization’s basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Camille Fauchon ◽  
David Meunier ◽  
Isabelle Faillenot ◽  
Florence B Pomares ◽  
Hélène Bastuji ◽  
...  

Abstract Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.


2021 ◽  
Author(s):  
Shuang-qi Gao

Abstract Objectives The subsets of astrocytes in the brain have not been fully elucidated. Using bulk RNA sequencing, reactive astrocytes were divided into A1 versus A2. However, using single-cell RNAseq (ScRNAseq), astrocytes were divided into over two subsets. Our aim was to set up the correspondence between the fluorescent-activated cell sorting (FACS)-bulk RNAseq and ScRNAseq data. Results We found that most of reactive astrocytes (RAs) marker genes were expressed in endothelial cells but not in astrocytes, suggesting those marker genes are not suitable for astrocytic activation. The absence of A1 and A2 astrocytes in the brain.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mehmet Ilyas Cosacak ◽  
Christos Papadimitriou ◽  
Caghan Kizil

Regenerative capacity of the brain is a variable trait within animals. Aquatic vertebrates such as zebrafish have widespread ability to renew their brains upon damage, while mammals have—if not none—very limited overall regenerative competence. Underlying cause of such a disparity is not fully evident; however, one of the reasons could be activation of peculiar molecular programs, which might have specific roles after injury or damage, by the organisms that regenerate. If this hypothesis is correct, then there must be genes and pathways that (a) are expressed only after injury or damage in tissues, (b) are biologically and functionally relevant to restoration of neural tissue, and (c) are not detected in regenerating organisms. Presence of such programs might circumvent the initial detrimental effects of the damage and subsequently set up the stage for tissue redevelopment to take place by modulating the plasticity of the neural stem/progenitor cells. Additionally, if transferable, those “molecular mechanisms of regeneration” could open up new avenues for regenerative therapies of humans in clinical settings. This review focuses on the recent studies addressing injury/damage-induced molecular programs in zebrafish brain, underscoring the possibility of the presence of genes that could be used as biomarkers of neural plasticity and regeneration.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140172 ◽  
Author(s):  
Marcus E. Raichle

Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.


2019 ◽  
Author(s):  
Jin Li ◽  
David E. Osher ◽  
Heather A. Hansen ◽  
Zeynep M. Saygin

AbstractWhat determines the functional organization of cortex? One hypothesis is that innate connectivity patterns set up a scaffold upon which functional specialization can later take place. We tested this hypothesis by asking whether the visual word form area (VWFA), an experience-driven region, was already connected to proto language networks in neonates scanned within one week of birth. With resting-state fMRI, we found that neonates showed adult-like functional connectivity, and observed that i) language regions connected more strongly with the putative VWFA than other adjacent ventral visual regions that also show foveal bias, and ii) the VWFA connected more strongly with frontotemporal language regions than with regions adjacent to these language regions. These data suggest that the location of the VWFA is earmarked at birth due to its connectivity with the language network, providing evidence that innate connectivity instructs the later refinement of cortex.


Author(s):  
Zahra Mousavi ◽  
Mohammad Mahdi Kiani ◽  
Hamid Aghajan

AbstractThe brain is constantly anticipating the future of sensory inputs based on past experiences. When new sensory data is different from predictions shaped by recent trends, neural signals are generated to report this surprise. Existing models for quantifying surprise are based on an ideal observer assumption operating under one of the three definitions of surprise set forth as the Shannon, Bayesian, and Confidence-corrected surprise. In this paper, we analyze both visual and auditory EEG and auditory MEG signals recorded during oddball tasks to examine which temporal components in these signals are sufficient to decode the brain’s surprise based on each of these three definitions. We found that for both recording systems the Shannon surprise is always significantly better decoded than the Bayesian surprise regardless of the sensory modality and the selected temporal features used for decoding.Author summaryA regression model is proposed for decoding the level of the brain’s surprise in response to sensory sequences using selected temporal components of recorded EEG and MEG data. Three surprise quantification definitions (Shannon, Bayesian, and Confidence-corrected surprise) are compared in offering decoding power. Four different regimes for selecting temporal samples of EEG and MEG data are used to evaluate which part of the recorded data may contain signatures that represent the brain’s surprise in terms of offering a high decoding power. We found that both the middle and late components of the EEG response offer strong decoding power for surprise while the early components are significantly weaker in decoding surprise. In the MEG response, we found that the middle components have the highest decoding power while the late components offer moderate decoding powers. When using a single temporal sample for decoding surprise, samples of the middle segment possess the highest decoding power. Shannon surprise is always better decoded than the other definitions of surprise for all the four temporal feature selection regimes. Similar superiority for Shannon surprise is observed for the EEG and MEG data across the entire range of temporal sample regimes used in our analysis.


2019 ◽  
Author(s):  
Ulrik Beierholm ◽  
Tim Rohe ◽  
Ambra Ferrari ◽  
Oliver Stegle ◽  
Uta Noppeney

AbstractTo form the most reliable percept of the environment, the brain needs to represent sensory uncertainty. Current theories of perceptual inference assume that the brain computes sensory uncertainty instantaneously and independently for each stimulus.In a series of psychophysics experiments human observers localized auditory signals that were presented in synchrony with spatially disparate visual signals. Critically, the visual noise changed dynamically over time with or without intermittent jumps. Our results show that observers integrate audiovisual inputs weighted by sensory reliability estimates that combine information from past and current signals as predicted by an optimal Bayesian learner or approximate strategies of exponential discountingOur results challenge classical models of perceptual inference where sensory uncertainty estimates depend only on the current stimulus. They demonstrate that the brain capitalizes on the temporal dynamics of the external world and estimates sensory uncertainty by combining past experiences with new incoming sensory signals.


Sign in / Sign up

Export Citation Format

Share Document