scholarly journals Sensus: A Cross-Platform, General-Purpose System for Mobile Crowdsensing in Human-Subject Studies

2021 ◽  
Author(s):  
HAOYI XIONG ◽  
Yu Huang ◽  
Laura Barnes ◽  
Matthew S. Gerber

The burden of entry into mobile crowdsensing (MCS) is prohibitively high for human-subject researchers who lack a technical orientation. As a result, the benefits of MCS remain beyond the reach of research communities (e.g., psychologists) whose expertise in the study of human behavior might advance applications and understanding of MCS systems. This paper presents Sensus, a new MCS system for human-subject studies that bridges the gap between human-subject researchers and MCS methods. Sensus alleviates technical burdens with on-device, GUI-based design of sensing plans, simple and efficient distribution of sensing plans to study participants, and uniform participant experience across iOS and Android devices. Sensing plans support many hardware and software sensors, automatic deployment of sensor-triggered surveys, and double-blind assignment of participants within randomized controlled trials. Sensus offers these features to study designers without requiring knowledge of markup and programming languages. We demonstrate the feasibility of using Sensus within two human-subject studies, one in psychology and one in engineering. Feedback from non-technical users indicates that Sensus is an effective and low-burden system for MCS-based data collection and analysis.

2021 ◽  
Vol 31 ◽  
Author(s):  
BHARGAV SHIVKUMAR ◽  
JEFFREY MURPHY ◽  
LUKASZ ZIAREK

Abstract There is a growing interest in leveraging functional programming languages in real-time and embedded contexts. Functional languages are appealing as many are strictly typed, amenable to formal methods, have limited mutation, and have simple but powerful concurrency control mechanisms. Although there have been many recent proposals for specialized domain-specific languages for embedded and real-time systems, there has been relatively little progress on adapting more general purpose functional languages for programming embedded and real-time systems. In this paper, we present our current work on leveraging Standard ML (SML) in the embedded and real-time domains. Specifically, we detail our experiences in modifying MLton, a whole-program optimizing compiler for SML, for use in such contexts. We focus primarily on the language runtime, reworking the threading subsystem, object model, and garbage collector. We provide preliminary results over a radar-based aircraft collision detector ported to SML.


2021 ◽  
Vol 32 (07) ◽  
pp. 395-404
Author(s):  
Adam Voss ◽  
Alison Brockmeyer ◽  
Michael Valente ◽  
John Pumford ◽  
Cameron C. Wick ◽  
...  

Abstract Background Best practice guidelines for verifying fittings of bone-anchored hearing devices (BAHD) recommend using aided sound-field thresholds (ASFT), but express caution regarding the variables impacting obtaining valid and reliable ASFTs.1 Recently, a skull simulator was introduced to facilitate programming BAHD devices in force level (FL) to desired sensation level-bone conduction devices (skull simulator/DSL-BCD)2 3 targets in a hearing aid analyzer. Currently, no evidence is available reporting if differences in measured FL using the manufacturer first-fit (FF) and word recognition in quiet, sentence reception threshold in noise, and subjective outcomes are present for a BAHD programmed using ASFT versus programmed using skull simulator/DSL-BCD targets. Purpose The aim of this study was to examine if significant differences were present in FL using the FF and word recognition in quiet at 50 and 65 decibel of sound pressure level (dB SPL), sentence reception threshold in noise and subjective outcomes using the abbreviated profile of hearing aid benefit (APHAB), and speech, spatial, and qualities of hearing (SSQ) between a BAHD fit using ASFT or skull simulator/DSL-BCD targets. Research Design A double-blind randomized crossover design with 15 adults having unilateral sensorineural hearing loss. All participants were successful users of the Cochlear America Baha 5. Data Collection and Analysis Baha Power 5 devices were fit using FF, ASFT, and skull simulator/DSL-BCD targets. Order of the three fitting strategies was randomly assigned and counter-balanced. Results No significant differences were found for a BAHD device programmed using ASFT versus skull simulator/DSL-BCD targets for consonant-nucleus-consonant words in quiet at 50 or 65 dB SPL, sentence reception threshold in noise, the APHAB or SSQ. There were, however, significant differences, at primarily 500 to 2,000 Hz in measured FLs between the FF, ASFT, and skull simulator/DSL-BCD targets at 50 and 65 dB SPL. Conclusions There were no significant differences in subject performance with two speech measures and subjective responses to two questionnaires for BAHD fittings using ASFT versus using skull simulator/DSL-BCD targets. Differences in FL between the three fitting strategies were present primarily at 500 to 2,000 Hz. Limitations of the study are highlighted along with situations where the skull simulator can play a significantly beneficial role when fitting BAHD devices.


2019 ◽  
Author(s):  
Fiona Pye ◽  
Nussaȉbah B Raja ◽  
Bryan Shirley ◽  
Ádám T Kocsis ◽  
Niklas Hohmann ◽  
...  

In a world where an increasing number of resources are hidden behind paywalls and monthly subscriptions, it is becoming crucial for the scientific community to invest energy into freely available, community-maintained systems. Open-source software projects offer a solution, with freely available code which users can utilise and modify, under an open source licence. In addition to software accessibility and methodological repeatability, this also enables and encourages the development of new tools. As palaeontology moves towards data driven methodologies, it is becoming more important to acquire and provide high quality data through reproducible systematic procedures. Within the field of morphometrics, it is vital to adopt digital methods that help mitigate human bias from data collection. In addition,m mathematically founded approaches can reduce subjective decisions which plague classical data. This can be further developed through automation, which increases the efficiency of data collection and analysis. With these concepts in mind, we introduce two open-source shape analysis software, that arose from projects within the medical imaging field. These are ImageJ, an image processing program with batch processing features, and 3DSlicer which focuses on 3D informatics and visualisation. They are easily extensible using common programming languages, with 3DSlicer containing an internal python interactor, and ImageJ allowing the incorporation of several programming languages within its interface alongside its own simplified macro language. Additional features created by other users are readily available, on GitHub or through the software itself. In the examples presented, an ImageJ plugin “FossilJ” has been developed which provides semi-automated morphometric bivalve data collection. 3DSlicer is used with the extension SPHARM-PDM, applied to synchrotron scans of coniform conodonts for comparative morphometrics, for which small assistant tools have been created.


2019 ◽  
Author(s):  
J-Donald Tournier ◽  
Robert Smith ◽  
David Raffelt ◽  
Rami Tabbara ◽  
Thijs Dhollander ◽  
...  

AbstractMRtrix3 is an open-source, cross-platform software package for medical image processing, analysis and visualization, with a particular emphasis on the investigation of the brain using diffusion MRI. It is implemented using a fast, modular and flexible general-purpose code framework for image data access and manipulation, enabling efficient development of new applications, whilst retaining high computational performance and a consistent command-line interface between applications. In this article, we provide a high-level overview of the features of the MRtrix3 framework and general-purpose image processing applications provided with the software.


2020 ◽  
Vol 6 (4) ◽  
pp. 00342-2020
Author(s):  
Hamid Akbarshahi ◽  
Zainab Ahmadi ◽  
David C. Currow ◽  
Jacob Sandberg ◽  
Zac Vandersman ◽  
...  

IntroductionCOPD is a major cause of morbidity and mortality. The prevalence, morbidity and mortality of COPD among females have increased. Previous studies indicate a possible gender bias in the diagnosis and management of COPD. The present study aims to determine if there is gender bias in the management of COPD in Sweden.MethodsThis was a double-blind, randomised (1:1), controlled, parallel-group, web-based trial using the hypothetical case scenario of a former smoker (40 pack-years and quit smoking 3 years ago) who was male or female. The participants were blind to the randomisation and the purpose of the trial. The case progressively revealed more information with associated questions on how the physician would manage the patient. Study participants chose from a list of tests and treatments at each step of the case scenario.ResultsIn total, 134 physicians were randomised to a male (n=62) or a female (n=72) case. There was no difference in initial diagnosis (61 (98%) male cases and 70 (97%) female cases diagnosed with COPD) and planned diagnostic procedures between the male and female cases. Spirometry was chosen by all the physicians as one of the requested diagnostic tests. The management of the hypothetical COPD case did not differ by sex of the responding physician.ConclusionIn Sweden, diagnosis and management of a hypothetical patient with COPD did not differ by the gender of the patient or physician.


Author(s):  
Akiko Mizote ◽  
Akiko Yasuda ◽  
Chiyo Yoshizane ◽  
Yuki Ishida ◽  
Shoji Kakuta ◽  
...  

Abstract Cyclic nigerosylnigerose (CNN) is a cyclic tetrasaccharide with properties distinct from those of other conventional cyclodextrins. We investigated the relative available energy of CNN in healthy humans. CNN digestibility was determined using brush border membrane vesicles from the small intestines of rats. CNN was not hydrolyzed by rat intestinal enzymes. To investigate breath hydrogen excretion, thirteen human subjects were included in a double-blind cross-over, randomized, placebo-controlled study. The effects of CNN on hydrogen excretion were compared with those of a typical nondigestible, fermentable fructooligosaccharide (FOS). In the study participants, hydrogen excretion hardly increased upon CNN and was remarkably lower than for FOS. The available energy value was determined using the fermentability based on breath hydrogen excretion and was evaluated as 0 kcal/g for CNN. CNN was hardly metabolized and hence may be used as a low-energy dietary fiber.


Author(s):  
Tim Dedeaux

Within the field of educational research, there are several methods, approaches, and concerns a potential researcher must be made aware of. This chapter serves as an introduction to the process of educational research, and as such, is intended for novice researchers seeking to gain an overview of the process of envisioning, designing, and carrying out a successful research project. Further, this chapter addresses the kinds of research that are possible within the academic field, some of the ethical and practical considerations involved in human subject research, and best methodological practices. Four major methods of research are discussed: qualitative, quantitative, mixed methods, and action research. Each method is provided with information on the subtypes of research within each area, appropriate methods of data collection and analysis, and acceptable formats for reporting results for each methodological type.


Sign in / Sign up

Export Citation Format

Share Document