scholarly journals Symbols are special: An fMRI adaptation study of symbolic, nonsymbolic and non-numerical magnitude processing in the human brain

2019 ◽  
Author(s):  
H Moriah Sokolowski ◽  
Zachary Hawes ◽  
Lien Peters ◽  
Daniel Ansari

Humans have the unique ability to represent and manipulate symbols. It is widely believed that this ability is rooted in an evolutionarily ancient system used to process nonsymbolic quantities in the human brain. In the current study, we used an fMRI adaptation paradigm to isolate the representations of symbols, quantities, and physical size in forty-five human adults. Results indicate that the neural correlates supporting symbolic number processing are entirely distinct from those supporting nonsymbolic magnitude processing. At the univariate level, symbolic number processing is associated with activation in the left inferior parietal lobule, whereas the processing of nonsymbolic magnitudes (both quantity and physical size), relates to activation in the right intraparietal sulcus. At the multivariate level, normalized patterns of activation for symbolic number processing exhibit a dissimilar pattern of activation compared to nonsymbolic magnitude processing in both the left and right parietal lobes. Additionally, the patterns of activation that associate with quantity and physical size are practically indistinguishable from one another. These findings challenge the longstanding belief that the culturally acquired ability to conceptualize symbolic numbers is rooted in an evolutionarily ancient system for nonsymbolic magnitude processing. Moreover, these data reveal that the system used to process nonsymbolic numbers may actually be a general magnitude processing system used to process numerical and non-numerical magnitudes. These findings highlight the need for the field to shift away from exploring how symbols are grounded in analog nonsymbolic representations, and toward more complex questions related to the neural consequences of learning symbolic numbers.

2010 ◽  
Vol 22 (5) ◽  
pp. 860-874 ◽  
Author(s):  
Christophe Mussolin ◽  
Anne De Volder ◽  
Cécile Grandin ◽  
Xavier Schlögel ◽  
Marie-Cécile Nassogne ◽  
...  

Developmental dyscalculia (DD) is a deficit in number processing and arithmetic that affects 3–6% of schoolchildren. The goal of the present study was to analyze cerebral bases of DD related to symbolic number processing. Children with DD aged 9–11 years and matched children with no learning disability history were investigated using fMRI. The two groups of children were controlled for general cognitive factors, such as working memory, reading abilities, or IQ. Brain activations were measured during a number comparison task on pairs of Arabic numerals and a color comparison task on pairs of nonnumerical symbols. In each task, pairs of stimuli that were close or far on the relevant dimension were constituted. Brain activation in bilateral intraparietal sulcus (IPS) was modulated by numerical distance in controls but not in children with DD. Moreover, although the right IPS responded to numerical distance only, the left IPS was influenced by both numerical and color distances in control children. Our findings suggest that dyscalculia is associated with impairment in areas involved in number magnitude processing and, to a lesser extent, in areas dedicated to domain-general magnitude processing.


2013 ◽  
Vol 25 (3) ◽  
pp. 388-400 ◽  
Author(s):  
Ian D. Holloway ◽  
Christian Battista ◽  
Stephan E. Vogel ◽  
Daniel Ansari

The ability to process the numerical magnitude of sets of items has been characterized in many animal species. Neuroimaging data have associated this ability to represent nonsymbolic numerical magnitudes (e.g., arrays of dots) with activity in the bilateral parietal lobes. Yet the quantitative abilities of humans are not limited to processing the numerical magnitude of nonsymbolic sets. Humans have used this quantitative sense as the foundation for symbolic systems for the representation of numerical magnitude. Although numerical symbol use is widespread in human cultures, the brain regions involved in processing of numerical symbols are just beginning to be understood. Here, we investigated the brain regions underlying the semantic and perceptual processing of numerical symbols. Specifically, we used an fMRI adaptation paradigm to examine the neural response to Hindu-Arabic numerals and Chinese numerical ideographs in a group of Chinese readers who could read both symbol types and a control group who could read only the numerals. Across groups, the Hindu-Arabic numerals exhibited ratio-dependent modulation in the left IPS. In contrast, numerical ideographs were associated with activation in the right IPS, exclusively in the Chinese readers. Furthermore, processing of the visual similarity of both digits and ideographs was associated with activation of the left fusiform gyrus. Using culture as an independent variable, we provide clear evidence for differences in the brain regions associated with the semantic and perceptual processing of numerical symbols. Additionally, we reveal a striking difference in the laterality of parietal activation between the semantic processing of the two symbols types.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anuj Shukla ◽  
Raju S. Bapi

AbstractThe processing of time and numbers has been fundamental to human cognition. One of the prominent theories of magnitude processing, a theory of magnitude (ATOM), suggests that a generalized magnitude system processes space, time, and numbers; thereby, the magnitude dimensions could potentially interact with one another. However, more recent studies have found support for domain-specific magnitude processing and argued that the magnitudes related to time and number are processed through distinct mechanisms. Such mixed findings have raised questions about whether these magnitudes are processed independently or share a common processing mechanism. In the present study, we examine the influence of numerical magnitude on temporal processing. To investigate, we conducted two experiments using a temporal comparison task, wherein we presented positive and negative numerical magnitudes (large and small) in a blocked (Experiment-1) and intermixed manner (Experiment-2). Results from experiment-1 suggest that numerical magnitude affects temporal processing only in positive numbers but not for negative numbers. Further, results from experiment-2 indicate that the polarity (positive and negative) of the numbers influences temporal processing instead of the numerical magnitude itself. Overall, the current study seems to suggest that cross-domain interaction of magnitudes arises from attentional mechanisms and may not need to posit a common magnitude processing system.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Simon M. McCrea ◽  
Thomas P. Robinson

In this study, five consecutive patients with focal strokes and/or cortical excisions were examined with the Wechsler Adult Intelligence Scale and Wechsler Memory Scale—Fourth Editions along with a comprehensive battery of other neuropsychological tasks. All five of the lesions were large and typically involved frontal, temporal, and/or parietal lobes and were lateralized to one hemisphere. The clinical case method was used to determine the cognitive neuropsychological correlates of mental rotation (Visual Puzzles), Piagetian balance beam (Figure Weights), and visual search (Cancellation) tasks. The pattern of results on Visual Puzzles and Figure Weights suggested that both subtests involve predominately right frontoparietal networks involved in visual working memory. It appeared that Visual Puzzles could also critically rely on the integrity of the left temporoparietal junction. The left temporoparietal junction could be involved in temporal ordering and integration of local elements into a nonverbal gestalt. In contrast, the Figure Weights task appears to critically involve the right temporoparietal junction involved in numerical magnitude estimation. Cancellation was sensitive to left frontotemporal lesions and not right posterior parietal lesions typical of other visual search tasks. In addition, the Cancellation subtest was sensitive to verbal search strategies and perhaps object-based attention demands, thereby constituting a unique task in comparison with previous visual search tasks.


2021 ◽  
Vol 14 ◽  
Author(s):  
Anuj Shukla ◽  
Raju S. Bapi

A Theory of Magnitude (ATOM) suggests that space, time, and quantities are processed through a generalized magnitude system. ATOM posits that task-irrelevant magnitudes interfere with the processing of task-relevant magnitudes as all the magnitudes are processed by a common system. Many behavioral and neuroimaging studies have found support in favor of a common magnitude processing system. However, it is largely unknown whether such cross-domain monotonic mapping arises from a change in the accuracy of the magnitude judgments or results from changes in precision of the processing of magnitude. Therefore, in the present study, we examined whether large numerical magnitude affects temporal accuracy or temporal precision, or both. In other words, whether numerical magnitudes change our temporal experience or simply bias duration judgments. The temporal discrimination (between comparison and standard duration) paradigm was used to present numerical magnitudes (“1,” “5,” and “9”) across varied durations. We estimated temporal accuracy (PSE) and precision (Weber ratio) for each numerical magnitude. The results revealed that temporal accuracy (PSE) for large (9) numerical magnitude was significantly lower than that of small (1) and identical (5) magnitudes. This implies that the temporal duration was overestimated for large (9) numerical magnitude compared to small (1) and identical (5) numerical magnitude, in line with ATOM’s prediction. However, no influence of numerical magnitude was observed on temporal precision (Weber ratio). The findings of the present study suggest that task-irrelevant numerical magnitude selectively affects the accuracy of processing of duration but not duration discrimination itself. Further, we argue that numerical magnitude may not directly affect temporal processing but could influence via attentional mechanisms.


2019 ◽  
Author(s):  
Zachary Hawes ◽  
H Moriah Sokolowski ◽  
Chuka Bosah Ononye ◽  
Daniel Ansari

Where and under what conditions do spatial and numerical skills converge and diverge in the brain? To address this question, we conducted a meta-analysis of brain regions associated with basic symbolic number processing, arithmetic, and mental rotation. We used Activation Likelihood Estimation (ALE) to construct quantitative meta-analytic maps synthesizing results from 86 neuroimaging papers (~ 30 studies/cognitive process). All three cognitive processes were found to activate bilateral parietal regions in and around the intraparietal sulcus (IPS); a finding consistent with shared processing accounts. Numerical and arithmetic processing were associated with overlap in the left angular gyrus, whereas mental rotation and arithmetic both showed activity in the middle frontal gyri. These patterns suggest regions of cortex potentially more specialized for symbolic number representation and domain-general mental manipulation, respectively. Additionally, arithmetic was associated with unique activity throughout the fronto-parietal network and mental rotation was associated with unique activity in the right superior parietal lobe. Overall, these results provide new insights into the intersection of numerical and spatial thought in the human brain.


1994 ◽  
Vol 10 (4-5) ◽  
pp. 561-571
Author(s):  
Gunnar Heuser ◽  
Ismael Mena ◽  
Francisca Alamos

Exposures to neurotoxic chemicals such as pesticides, glues, solvents, etc. are known to induce neurologic and psychiatric symptomatology. We report on 41 patients 16 young patients (6 males, 10 females, age 34 8 yrs.) and 25 elderly patients (9 males, 16 females, age 55 7 yrs). Fifteen of them were exposed to pesticides, and 29 to solvents. They were studied with quantitative and qualitative analysis of regional cerebral bood flow (rCBF), performed with 30 mCi of Xe-133 by inhalation, followed by 30 mCi of Tc-HMPAO given intravenously. Imaging was performed with a brain dedicated system, distribution of rCBF was assessed with automatic ROI definition, and HMPAO was normalized to maximal pixel activity in the brain. Results of Xe rCBF are expressed as mean and S.D. in ml/min/100g, and HMPAO as mean and S.D. uptake per ROI, and compared with age-matched controls 10 young and 20 elderly individuals. Neurotoxics HMPAO Uptake Young Elderly R. Orbital frontal R. Dorsal frontal .70 .66 p < 0.05 R. Temporal .64 p < 0.001 R. Parietal .66 .66 We conclude that patients exposed to chemicals present with diminished CBF, worse in the right hemisphere, with random presentation of areas of hypoperfusion, more prevalent in the dorsal frontal and parietal lobes. These findings are significantly different from observations in patients with chronic fatigue and depression, suggesting primary cortical effect, possibly due to a vasculitis process.


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


1991 ◽  
Vol 1 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Frank E. Musiek ◽  
Suzanne Lenz ◽  
Karen M. Gollegly

1. There appears to be a relationship among the improved overall behavior of this patient, anatomical changes in the brain, and enhanced performance of both psychophysical and electrophysiological central auditory tests. 2. The right-sided peripheral hearing loss was one of the primary indicators for further diagnostic workup, but probably is unrelated to the lesion that was later discovered. 3. In demonstrating structural as well as functional improvement, this case demonstrates the plasticity of the young human brain.


2018 ◽  
Vol 7 (4) ◽  
pp. 45-55 ◽  
Author(s):  
Nikhil Kumar ◽  
Sunny Behal

Face recognition is considered as one of toughest and most crucial leading domains of digital image processing. The human brain also uses a similar kind of technique for face recognition. When scrutinizing a face, the human brain signifies the result. Aside from AN automatic processing system, this technique is very sophisticated, owing to the image variations on account of the picture varieties in as far as area, size, articulation, and stance. In this article, the authors have used the options of native binary pattern and uniform native binary pattern for face recognition. They compute a number of classifiers on publicly available benchmarked ORL image databases to validate the proposed approach. The results clearly show that the proposed LBP-piece shrewd strategy has outperformed the traditional LBP system.


Sign in / Sign up

Export Citation Format

Share Document