scholarly journals Changes in visual cortical processing attenuate singleton distraction during visual search

2020 ◽  
Author(s):  
Bo Yeong Won ◽  
Martha Forloines ◽  
Zhiheng Zhou ◽  
Joy Geng

The ability to suppress distractions is essential to successful completion of goal-directed behaviors. Several behavioral studies have recently provided strong evidence that learned suppression may be particularly efficient in reducing distractor interference. Expectations about a distractor’s repeated location, color, or even presence is rapidly learned and used to attenuate interference. In this study, we use a visual search paradigm in which a color singleton, which is known to capture attention, occurs within blocks with high or low frequency. The behavioral results show reduced singleton interference during the high compared to the low frequency block (Won et al., 2019). The fMRI results provide evidence that the attenuation of distractor interference is supported by changes in singleton, target, and non-salient distractor representations within retinotopic visual cortex. These changes in visual cortex are accompanied by findings that singleton-present trials compared to non-singleton trials produce greater activation in bilateral parietal cortex, indicative of attentional capture, in low frequency, but not high frequency blocks. Together, these results suggest that the readout of saliency signals associated with an expected color singleton from visual cortex is suppressed, resulting in less competition for attentional priority in frontoparietal attentional control regions.

1999 ◽  
Vol 82 (6) ◽  
pp. 3594-3597 ◽  
Author(s):  
Nathaniel B. Sawtell ◽  
Kimberly M. Huber ◽  
John C. Roder ◽  
Mark F. Bear

We tested the role of group I mGluRs in the induction of long-term depression (LTD) in the visual cortex, using the novel mGluR antagonist LY341495 and mice lacking mGluR5, the predominant phosphoinositide (PI)-linked mGluR in the visual cortex. We find that LY341495 is a potent blocker of glutamate-stimulated PI hydrolysis in visual cortical synaptoneurosomes, and that it effectively antagonizes the actions of the mGluR agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (ACPD) on synaptic transmission in visual cortical slices. However, LY341495 has no effect on the induction of LTD by low-frequency stimulation. Furthermore, mice lacking mGluR5 show normal NMDA receptor-dependent LTD. These results indicate that group I mGluR activation is not required for the induction of NMDA receptor-dependent LTD in the visual cortex.


1998 ◽  
Vol 9 (3) ◽  
pp. 176-182 ◽  
Author(s):  
Bradley S. Gibson ◽  
Yuhong Jiang

The existence of a pure form of stimulus-driven attentional control has been aligned exclusively with the existence of attentional capture. Unfortunately, there has been little evidence provided in support of attentional capture. The present study investigated whether the repeated failure to observe attentional capture might be due to the way in which attentional capture has been measured. A new visual search procedure was used to investigate whether attention would be captured by an initial and unexpected encounter with a color singleton. Despite this important change in procedure, the color singleton still did not capture attention. Further evidence showed that visual search for the color singleton could be highly efficient, but only after its relevance became established, and that the failure to observe capture in the present experiment was not due to other potentially detrimental effects of surprise. The present results suggest that new conceptions of stimulus-driven attentional control are required.


2020 ◽  
Author(s):  
Dustin J. Hayden ◽  
Daniel P. Montgomery ◽  
Samuel F. Cooke ◽  
Mark F. Bear

AbstractFiltering out familiar, irrelevant stimuli eases the computational burden on the cerebral cortex. Inhibition is a candidate mechanism in this filtration process. Oscillations in the cortical local field potential (LFP) serve as markers of the engagement of different inhibitory neurons. In awake mice, we find pronounced changes in LFP oscillatory activity present in layer 4 of primary visual cortex (V1) with progressive stimulus familiarity. Over days of repeated stimulus presentation, low frequency (alpha/beta ~15 Hz peak) power increases while high frequency (gamma ~65 Hz peak) power decreases. This high frequency activity re-emerges when a novel stimulus is shown. Thus, high frequency power is a marker of novelty while low frequency power signifies familiarity. Two-photon imaging of neuronal activity reveals that parvalbumin-expressing inhibitory neurons disengage with familiar stimuli and reactivate to novelty, consistent with their known role in gamma oscillations, whereas somatostatin-expressing inhibitory neurons show opposing activity patterns, indicating a contribution to the emergence of lower frequency oscillations. We also reveal that stimulus familiarity and novelty have differential effects on oscillations and cell activity over a shorter timescale of seconds. Taken together with previous findings, we propose a model in which two interneuron circuits compete to drive familiarity or novelty encoding.


2010 ◽  
Vol 7 (9) ◽  
pp. 706-706
Author(s):  
H. J. Godwin ◽  
T. Menneer ◽  
S. Helman ◽  
K. R. Cave ◽  
N. Donnelly

2019 ◽  
Author(s):  
Crystal L. Lantz ◽  
Sachiko Murase ◽  
Elizabeth M. Quinlan

SummaryThe experience-dependent decrease in stimulus detection thresholds that underly perceptual learning can be induced by repetitive exposure to a visual stimulus. Robust stimulus-selective potentiation of visual responses is induced in the primary mouse visual cortex by repetitive low frequency visual stimulation (LFVS). How the parameters of the repetitive visual stimulus impact the site and specificity of this experience-dependent plasticity is currently a subject of debate. Here we demonstrate that the stimulus selective response potentiation induced by repetitive low frequency (1 Hz) stimulation, which is typically limited to layer 4, shifts to superficial layers following manipulations that enhance plasticity in primary visual cortex. In contrast, repetitive high frequency (10 Hz) visual stimulation induces response potentiation that is expressed in layers 4 and 5/6, and generalizes to novel visual stimuli. Repetitive visual stimulation also induces changes in the magnitude and distribution of oscillatory activity in primary visual cortex, however changes in oscillatory power do not predict the locus or specificity of response potentiation. Instead we find that robust response potentiation is induced by visual stimulation that resets the phase of ongoing gamma oscillations. Furthermore, high frequency, but not low frequency, repetitive visual stimulation entrains oscillatory rhythms with enhanced sensitivity to phase reset, such that familiar and novel visual stimuli induce similar visual response potentiation.


2015 ◽  
Vol 114 (1) ◽  
pp. 531-539 ◽  
Author(s):  
Heath G. Jones ◽  
Andrew D. Brown ◽  
Kanthaiah Koka ◽  
Jennifer L. Thornton ◽  
Daniel J. Tollin

The century-old duplex theory of sound localization posits that low- and high-frequency sounds are localized with two different acoustical cues, interaural time and level differences (ITDs and ILDs), respectively. While behavioral studies in humans and behavioral and neurophysiological studies in a variety of animal models have largely supported the duplex theory, behavioral sensitivity to ILD is curiously invariant across the audible spectrum. Here we demonstrate that auditory midbrain neurons in the chinchilla ( Chinchilla lanigera) also encode ILDs in a frequency-invariant manner, efficiently representing the full range of acoustical ILDs experienced as a joint function of sound source frequency, azimuth, and distance. We further show, using Fisher information, that nominal “low-frequency” and “high-frequency” ILD-sensitive neural populations can discriminate ILD with similar acuity, yielding neural ILD discrimination thresholds for near-midline sources comparable to behavioral discrimination thresholds estimated for chinchillas. These findings thus suggest a revision to the duplex theory and reinforce ecological and efficiency principles that hold that neural systems have evolved to encode the spectrum of biologically relevant sensory signals to which they are naturally exposed.


2018 ◽  
Author(s):  
Edden M. Gerber ◽  
Leon Y. Deouell

AbstractWhat are the neurophysiological correlates of sustained visual processing in the scalp EEG signal? In a previous study using intracranial recordings in humans, we found that presentation of visual stimuli for prolonged durations (up to 1.5 seconds) was associated with two kinds of sustained neural activity patterns: a high-frequency broadband (>30 Hz) response that tracked the duration of the stimulus with high precision in early visual cortex (EVC), and with lesser temporal precision in downstream category-selective areas; and a sustained low-frequency potential shift appearing in a small subset of EVC sites. Using a similar approach of presenting images for variable durations to identify sustained activity, we provide the first comprehensive characterization of the manifestation of sustained visual responses as recorded with EEG. In a series of four experiments, we found that both high- and low-frequency sustained responses can be detected on the scalp. The high frequency activity could be detected with high signal to noise ratio only in a subset of individual subjects, in whom it was unequivocal and highly localized. The low frequency sustained response was sensitive to the size and position of the stimulus in the visual field. Both response types showed strong lateralization for stimuli on the left vs. right visual field, suggesting a retinotopic visual cortical source. However, different scalp topographies and different modulation by stimulus properties suggest that the two types of sustained responses are likely driven by distinct sources, and reflect different aspects of sustained processing in the visual cortex.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


Sign in / Sign up

Export Citation Format

Share Document