scholarly journals Structural analysis of Cu substituted Ni\Zn in Ni-Zn Ferrite

BIBECHANA ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 128-133
Author(s):  
Deependra Parajuli ◽  
K Samatha

Ni-Zn ferrites are soft ferrites basically popular for high-frequency devices. They have low coercivity, low permeability, and higher resistivity. These properties have their own benefits on one hand but on the other hand, we can make them more efficient by doping suitable elements in order for tuning their properties for other applications. It this work, highly conducting Cu is used for substituting Ni in Ni-Zn ferrites and prepared Ni0.5-xCuxZn0.5Fe2O4 (x = 0, 0.05, 0.1, 0.15 and 0.2) samples using the sol-gel auto-combustion process. We have studied their resulting structural parameter using X-ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy method and compared with that of Cu substituted Zn Ni-Zn ferrites. Their structures are found to be single-phase cubic spinel similar to that of Cu substituted Zn. The lattice constant increases with Cu concentration opposite to that at Zn substitution. Likewise, the size of the crystallites was not in monotonic change with the doping concentration in both cases due to internal strain and cation distribution. The difference in the pattern of XRD and FTIR of our samples indicate their different but significant properties. The changes in the structure show the effect of Cu doping and indicate the possible interesting changes in their electric, electronic, and magnetic properties. BIBECHANA 18  (2021) 128-133

2007 ◽  
Vol 280-283 ◽  
pp. 609-612 ◽  
Author(s):  
Hao Sheng ◽  
Zhen Xing Yue ◽  
Zhi Lun Gui ◽  
Long Tu Li

BiFeO3-PbTiO3 powders were synthesized by a novel sol-gel auto-combustion method. The gels, transformed from the aqueous solutions of metal nitrate and citric acid, undergo a selfpropagatingcombustion process when being ignited and yield voluminous ashes. These ashes are single phase perovskite BiFeO3-PbTiO3 powders. The redox behaviors of the dried gels were studied by DTA-TG technique and IR spectra. The synthesized powders were characterized in terms of XRD, SEM and BET techniques.


BIBECHANA ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 80-86
Author(s):  
D. Parajuli ◽  
K. Samatha

Cu substituted Ni in Ni0.5-xCuxZn0.5Fe2O4 (x = 0, 0.05, 0.1, 0.15 and 0.2) samples and Cu substituted Zn in Ni0.5Zn0.5−xCuxFe2O4 (x = 0, 0.05, 0.1, 0.15 and 0.2) is synthesized using the sol-gel auto-combustion process. Recently, we have carried out their structural analysis using XRD and FTIR and found a cubic spinel structure. In this paper, we have studied their morphological and compositional structure with the help of a Scanning Electron Microscope (SEM) attached with an Energy Dispersive Spectrometer (EDS). The comparative study shows that the grain size of Cu substituted Ni is greater than Cu substituted Zn in Ni-Zn ferrite. These smaller grain-sized ferrites are preferred for many microstructural applications. Depending on the available magnetic field, sintering temperature, and atmosphere, they can have different nucleation, and hence their application mode is different. They can have a critical concentration that can tune their properties. The EDS attached with the SEM confirmed the proper composition of samples. BIBECHANA 18 (2) (2020) 80-86


2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


2018 ◽  
Vol 16 (36) ◽  
pp. 140-152 ◽  
Author(s):  
Nasma A. Jaber

Lithium doped Nickel-Zinc ferrite material with chemical formula Ni0.9−2x Zn0.1LixFe2+xO4, where x is the ratio of lithium ions Li+ (x = 0, 0.01, 0.02, 0.03 and 0.04) prepared by using sol-gel auto combustion technique. X-ray diffraction results showed that the material have pure cubic spinal structure with space group Fd-3m. The experimental values of the lattice constant (aexp) were decreased from 8.39 to 8.35 nm with doped Li ions. It was found that the decreasing of the crystallite size with addition of lithium ions concentration. The radius of tetrahedral (rtet) and octahedral (roct) site were computed from cation distribution. SEM images have been taken to show the morphology of compound. The dielectric parameters [dissipation factor (Df), the dielectric constant (Ԑ') and a.c. conductivity (ζac)] of spinal ferrite nano-powder have been measured. The dielectric parameters as a function of concentration have been studied for ferrite synthesis. The saturation of magnetization (Ms), remiensis (Mr) and coersivity (Hc) were found from hysteresis loop. The Ms and Hc varied from 36.47 to 66.15 emu/gm and 103 to 133 Oe for ferrite synthesis, respectively.


1997 ◽  
Vol 12 (10) ◽  
pp. 2518-2521 ◽  
Author(s):  
J. Schäfer ◽  
W. Sigmund ◽  
S. Roy ◽  
F. Aldinger

Lead zirconate titanate powders are derived from a novel aqueous-based citrate-nitrate/oxynitrate sol-gel combustion process. Aqueous solutions of metal nitrates or oxynitrates are transformed into gels with citric acid under heating. The received gels undergo a self-propagating combustion reaction on heating to 180 °C and subsequently yield voluminous ashes. These ashes form single phase perovskite Pb(Zr0.53Ti0.47)O3 powder with a specific surface area of 8 m2/g upon calcination at 550 °C. The ashes show a homogeneous distribution of lead, zirconium, and titanium ions which guarantees short diffusion paths in solid state formation of PZT perovskite. The redox behavior of the gels was studied with the help of DTA experiments. Powders are characterized in terms of XRD, SEM, and EDX analysis.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950219 ◽  
Author(s):  
Mukhtar Ahmad ◽  
Jawaria Shaheen ◽  
Waseem Abbas Hashmi ◽  
Majid Niaz Akhtar ◽  
Muhammad Asif

In this work, Sr-substituted samples of single-phase spinel monoferrites with chemical formula [Formula: see text] (x = 0.00, 0.33, 0.67, 1.00) were synthesized using sol–gel auto-combustion method. In order to confirm the single-phase formation of these samples, a sample (x = 0.00) was chosen for heat treatment at different temperatures (100, 300, 400, 600 and [Formula: see text]) for 4 h. The heat treated sample was then investigated by X-ray diffraction (XRD) analysis and results showed that a single-phase sample can be successfully synthesized at a temperature of [Formula: see text], which is much lower than that reported in earlier literature for synthesis of same structured samples. All the synthesized samples were then sintered at [Formula: see text] for 4 h to achieve better crystallinity. From XRD patterns, lattice parameters, cell volume and XRD density as a function of Sr-substitution were calculated. Scanning electron microscopy (SEM) results showed that the grain size increased as the temperature was increased. Fourier transform infrared spectroscopy (FTIR) results confirmed the single-phase spinel monoferrites at [Formula: see text]. From M–H loops (x = 0.0, 0.33, 0.67 and 1.00), different magnetic parameters such as saturation magnetization [Formula: see text], remanance [Formula: see text], coercivity [Formula: see text] and magnetic moment [Formula: see text] were calculated. Magnetocrystalline anisotropy constant and Y–K angles of Sr-doped Ba monoferrites were also calculated. In addition, the variation of different dielectric parameters (real permittivity, imaginary permittivity, real permeability, imaginary permeability, ac conductivity and loss tangent) as a function of frequency (1–6 GHz) has been discussed in this work. The results suggest that the synthesized materials have many advantages over previously reported single-phase spinel monoferrites.


Sign in / Sign up

Export Citation Format

Share Document