scholarly journals Vulnerability Assessment of Peoples Exposed to Landslides in Panchase of Nepal using Analytical Hierarchy Process

2020 ◽  
Vol 9 (2) ◽  
pp. 81-103
Author(s):  
Padam Bahadur Budha ◽  
Pawan Rai ◽  
Prem Katel ◽  
Anu Khadka

The occurrence of landslides in mountainous areas of Nepal is recurrent phenomena and this can be disastrous if occurred within human settlements. Proper research is required to manage and reduce the risks of the disaster in places where landslides had occurred frequently. In risk assessment estimation of vulnerability is one major component. This research was aimed to generate information on the vulnerability of people in the Panchase area of central Nepal. The method of analytical hierarchy process was used to define the weightage to be assigned for 4 factors and 26 indicators used in the research. 377 households were surveyed with a questionnaire designed to collect information on those indicators. The households sampled for the survey were made sure that they were near or around the landslide affected area. The response for each indicator was converted into scores which when summed up yielded the vulnerability score. This score for each household was used to categorize households into five levels of vulnerability from very low, low, moderate, high, to very high. The numbers of households in each category were 16, 92, 191, 75, and 3 respectively. Environmental and economic indicators were inflicting higher vulnerability in this research location. Remoteness and lesser number of facilities and/or services, lower numbers of governmental offices, absence of banking and financial institutions, lesser preferences for insurances and savings, degraded natural water sources were major determinants of higher vulnerability in Panchase. These indicators should be prioritized during disaster risk management in Panchase.

2019 ◽  
Vol 11 (10) ◽  
pp. 2738 ◽  
Author(s):  
Jiayang Zhang ◽  
Yangbo Chen

China’s coastal areas suffer from typhoon attacks every year. Rainstorms induced by typhoons characteristically are high intensity with a large amount of rain and usually induce floods and waterlogging in the affected area. Guangdong province has the highest frequency of typhoon hits in China. It has a special geographical position as well as unique climatic features, but the typhoon flood disaster risk has not been fully assessed in this area. This article attempts to fill this gap by providing a comprehensive risk assessment for the area. By combining the Analytical Hierarchy Process (AHP) and multi-factor analysis through geographic information system (GIS) and the comprehensive weighted evaluation, the typhoon flood disaster risk is evaluated from four different aspects with seventeen indicators. A comprehensive study of the typhoon flood disaster risk is carried out, and the risk maps with a resolution of 1 km2 have been made. There is a good coherence between the typhoon flood risk map and historical records of typhoon floods in Guangdong province. The results indicate that the comprehensive typhoon flood disaster risk in the coastal regions of Guangdong province is obviously higher than in the Northern mountainous areas. Chaoshan plain and Zhanjiang city have the highest risk of typhoon flood disaster. Shaoguan and Qingyuan cities, which are in the Northern mountainous areas, have the lowest risk. The spatial distribution of typhoon flood disaster risks shows that it has certain regulations along the coast and rivers, but it may be affected by economic and human activities. This article is significant for environmental planning and disaster management strategies of the study area as well as in similar climatic regions in other parts of the world.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 758 ◽  
Author(s):  
Romulus Costache ◽  
Alina Barbulescu ◽  
Quoc Bao Pham

In the present study, the susceptibility to flash-floods and flooding was studied across the Izvorul Dorului River basin in Romania. In the first phase, three ensemble models were used to determine the susceptibility to flash-floods. These models were generated by a combination of three statistical bivariate methods, namely frequency ratio (FR), weights of evidence (WOE), and statistical index (SI), with fuzzy analytical hierarchy process (FAHP). The result obtained from the application of the FAHP-WOE model had the best performance highlighted by an Area Under Curve—Receiver Operating Characteristics Curve (AUC-ROC) value of 0.837 for the training sample and another of 0.79 for the validation sample. Furthermore, the results offered by FAHP-WOE were weighted on the river network level using the flow accumulation method, through which the valleys with a medium, high, and very high torrential susceptibility were identified. Based on these valleys’ locations, the susceptibility to floods was estimated. Thus, in the first stage, a buffer zone of 200 m was delimited around the identified valleys along which the floods could occur. Once the buffer zone was established, ten flood conditioning factors were used to determine the flood susceptibility through the analytical hierarchy process model. Approximately 25% of the total delimited area had a high and very high flood susceptibility.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ridalin Lamat ◽  
Mukesh Kumar ◽  
Arnab Kundu ◽  
Deepak Lal

AbstractThis study presents a geospatial approach in conjunction with a multi-criteria decision-making (MCDM) tool for mapping forest fire risk zones in the district of Ri-Bhoi, Meghalaya, India which is very rich in biodiversity. Analytical hierarchy process (AHP)-based pair-wise comparison matrix was constructed to compare the selected parameters against each other based on their impact/influence (equal, moderate, strong, very strong, and extremely strong) on a forest fire. The final output delineated fire risk zones in the study area in four categories that include very high-risk, high-risk, moderate-risk, and low-risk zones. The delineated fire risk zones were found to be in close agreement with actual fire points obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) fire data for the study area. Results indicated that Ri-Bhoi’s 804.31 sq. km. (32.86%) the area was under ‘very high’ fire susceptibility. This was followed by 583.10 sq. km. (23.82%), 670.47 sq. km. (27.39%), and 390.12 sq. km. (15.93%) the area under high, moderate, and low fire risk categories, respectively. These results can be used effectively to plan fire control measures in advance and the methodology suggested in this study can be adopted in other areas too for delineating potential fire risk zones.


2014 ◽  
Vol 28 (2) ◽  
Author(s):  
Muchtar S Solle ◽  
Paharuddin Paharuddin ◽  
Asmita Ahmad ◽  
Muh. Ansar

The objectives of this study are as  follows: first, to investigate the contributing parameters induced land sliding in the Budong-Budong watershed, and second, to construct landslide susceptibility zonation map.  In this study, the analytical hierarchy process (AHP) based on Geographical Information System (GIS) methods was used to produce map of landslide susceptibility. In this study area, more than 50% of total area were classified high (H) to very high (VH)  susceptibility landslide zone.  Mean while, 12% of total area were classified as  moderate (M)  and remaining were classified as  low (L) to very low (VL) susceptibility landslide zone. Almost area of Budong-Budong Wetershed were classified as VH and H susceptibility landslide zone underlying by Talaya (Tmtv), Lamasi (Toml) and Latimojong (Kls) Formation on the steep slope land.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 504
Author(s):  
Peyman Zandi ◽  
Mohammad Rahmani ◽  
Mojtaba Khanian ◽  
Amir Mosavi

Failure mode and effects analysis (FMEA) is a popular technique in reliability analyses. In a typical FMEA, there are three risk factors for each failure modes: Severity (S), occurrence (O), and detectability (D). These will be included in calculating a risk priority number (RPN) multiplying the three aforementioned factors. The literature review reveals some noticeable efforts to overcome the shortcomings of the traditional FMEA. The objective of this paper is to extend the application of FMEA to risk management for agricultural projects. For this aim, the factor of severity in traditional FMEA is broken down into three sub-factors that include severity on cost, the severity on time, and severity on the quality of the project. Moreover, in this study, a fuzzy technique for order preference by similarity to ideal solution (TOPSIS) integrated with a fuzzy analytical hierarchy process (AHP) was used to address the limitations of the traditional FMEA. A sensitivity analysis was done by weighing the risk assessment factors. The results confirm the capability of this Hybrid-FMEA in addressing several drawbacks of the traditional FMEA application. The risk assessment factors changed the risk priority between the different projects by affecting the weights. The risk of water and energy supplies and climate fluctuations and pests were the most critical risk in agricultural projects. Risk control measures should be applied according to the severity of each risk. Some of this research’s contributions can be abstracted as identifying and classifying the risks of investment in agricultural projects and implementing the extended FMEA and multicriteria decision-making methods for analyzing the risks in the agriculture domain for the first time. As a management tool, the proposed model can be used in similar fields for risk management of various investment projects.


Sign in / Sign up

Export Citation Format

Share Document