scholarly journals Gender and Energy for Space Heating and Cooling

2020 ◽  
Vol 15 (3) ◽  
pp. 368-374
Author(s):  
Prerana Tuladhar

Energy is one of the crucial aspects now-a-days to be considered from the household chores to the educational, transportation, industrial and many other sectors. Apart from cooking, space heating and cooling also have greater impact as buildings consume about 40% of world’s energy use and major part of energy is used for space heating and cooling [1]. Gender is another aspect that should be taken in to consideration in the energy sector. Discrimination between men and women, either it may be in the knowledge regarding energy sector, profession, application and practices etc. is seen in our society. Therefore, this paper seeks to investigate the impacts of space heating and cooling in the energy consumption pattern of Residential buildings. This paper explores how the gender issues in the energy sector can be addressed and how can it lead towards the sustainable development of the society and then nation. At the same time, paper highlights the changes and improvements in the energy consumption pattern with the enrollment of women in the energy sector. The conclusions are derived from the several literature studies and explorative data analysis with the concern of gender relation with the energy efficiency in the space heating and cooling of residential buildings.

Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2020 ◽  
Vol 12 (16) ◽  
pp. 6563
Author(s):  
Roque G Stagnitta ◽  
Matteo V Rocco ◽  
Emanuela Colombo

Energy balances have been historically conceived based on a supply-side perspective, providing neither detailed information about energy conversion into useful services nor the effects that may be induced by the application of policies in other sectors to energy consumption. This article proposes an approach to a thorough assessment of the impact of efficiency policies on final energy uses, focusing on residential space heating and cooling, and capable of: (1) quantifying final useful services provided and (2) accounting for the global impact of efficiency policies on final energy use, taking advantage of Input–Output analysis. This approach is applied in five cities of Argentina. Firstly, the quantity of energy service provided (i.e., level of thermal comfort) for each city is evaluated and compared with the defined target. It is found out that heating comfort is guaranteed approximately as established, whereas in the cooling case the provision is twice the established level. Secondly, primary energy consumption of heating and cooling services is evaluated before and after different efficiency improvement policies. The results show that the major primary energy saving (52%) is obtained from the upgrading appliances scenario and reflect the importance of accounting for embodied energy in goods and services involved in interventions.


Author(s):  
Swapan Saha ◽  
Dharma Hagare ◽  
Jiaqi Zhou ◽  
Md Kamrul Hassan

Space cooling and heating in residential sector is significant contributor to energy consumption in Australia. Therefore, it is important to reduce the cooling and heating requirements. The selection of a good walling system helps to save energy by homes. This research compared the thermal efficiency of a modern house (constructed using brick veneer walls with concrete floor slab) with an old house (constructed using fibro cement walls raised timber floor) using the AccuRate simulation tool. A standard house with two living rooms, one kitchen, one laundry and four bedrooms are simulated in a Sydney Suburb in Australia. It was found that modern house showed lower inside temperature variation than the old house all year around. The results also showed that the modern house has a lower energy consumption for space heating and cooling than the old house. The annual energy use for space heating and cooling in both the modern house and old house were 5197 kWh and 15,712 kWh respectively. Moreover, the annual energy costs were found to be $1,403 and $4,242 respectively for modern and old houses. The modern brick veneer house saved about 33 % of energy compared to old old house. When the net present value of the energy cost for f both houses over 50 years is computed, the energy cost of modern house was found to be $25,629 while it of old house is was $77,488 for the old house.


2013 ◽  
Vol 768 ◽  
pp. 265-271
Author(s):  
Satish Kumar Yawale

With rapid growth in economy, energy consumption in developing countries like India is increasing at a fast rate primarily due to increase in demand in energy intensive sectors. The adverse impacts on the environment due to high energy demand are also becoming evident. Energy consumption in household sector can be defined as the energy consumed in homes to meet the needs of the residents themselves. To understand the residential energy consumption pattern it is important to identify the drivers of energy use in developing India. The basic drivers are population growth, household size, fuel and technology, income level and life style changes. Energy and climate change related concern of the Indian economy include the growing gap between demand and supply of energy, and environmental externalities associated with energy use. In this paper the drivers of energy consumption and emission are identified and the Indian household energy consumption pattern is analyzed.


2018 ◽  
Vol 10 (10) ◽  
pp. 3407 ◽  
Author(s):  
Miguel-Angel Perea-Moreno ◽  
Francisco Manzano-Agugliaro ◽  
Alberto-Jesus Perea-Moreno

Buildings account for one third of the world’s energy consumption, 70% of which is devoted to heating and cooling. To increase the share of renewables in the energy consumption of buildings, it is necessary to research and promote new sources of green energy. World production of sunflower (Helianthus annuus) was 47.34 million tons in 2016, with a harvested area of 26.20 million hectares, and the main producing countries being Ukraine, the Russian Federation, and Argentina, which produce about half of world production of sunflower seed. The sunflower husk, which represents a percentage by weight of 45%–60% of the seed depending on the sunflower variety, is widely used for the production of feed; however, its energy use is very scarce. The objectives of this study were to analyse the energy properties of sunflower husk as a solid biofuel and to carry out an energy, environmental, economic and operational analysis of a thermal installation fed with this by-product of the sunflower oil industry. The results show that this agro-industrial waste has a Higher Heating Value (HHV) of 17.844 MJ/kg, similar to that of other solid biofuels currently used. In addition, replacing a 430 kW fuel oil boiler with a biomass boiler of the same capacity fed by this biofuel can avoid the emission of 254.09 tons of CO2 per year, as well as obtain an annual energy saving of 75.47%. If we consider the production of sunflower seeds in each country and the sunflower husk were used as biofuel, this would result in a CO2 saving of more than 10 per thousand of the total emissions emitted. The results of this work contribute to the standardization of this by-product as a solid biofuel for thermal energy generation due to its potential to reduce CO2 emissions and increase energy efficiency.


2021 ◽  
Vol 65 (1) ◽  
pp. 83-92
Author(s):  
Valeria Todeschi ◽  
Simone Beltramino ◽  
Bernadette El Jamous ◽  
Guglielmina Mutani

Nowadays, energy consumption in buildings is one of the fundamental drivers to control greenhouse gas emissions and environmental impact. In fact, the air quality of urban environments can cause two main phenomena in metropolitan areas: urban heat island and climate changes. The aim of this work is to showcase how different building variables can impact the residential building’s space heating and cooling energy consumption. Buildings energy-related variables can be fundamental viewpoints to improve the energy performance of neighborhoods, especially in future urban planning. This work examines four neighborhoods in the city of Turin (IT): Arquata, Crocetta, Sacchi, and Olympic Village characterized by different morphologies and building typologies. In each neighborhood, residential building was grouped according to orientations and construction periods. A sensitivity analysis was applied by analysing six building variables: infiltration rate, window-to-wall ratio, and windows, walls, roofs, and floor thermal transmittances. The energy consumption for space heating and cooling of residential buildings and local climate conditions were investigated using CitySim Pro tool and ENVI-met. The challenge of this work is to identify the building variables that most influence energy consumption and to understand how to promote high-energy efficiency neighborhoods: the goal is to identify the “ideal” urban form with low consumption and good comfort conditions in outdoor urban environments. The results of this work show a significant connection between the energy consumption and the six analyzed building variables; however, this relationship also depends on the shape and orientation of the neighborhood.


Sign in / Sign up

Export Citation Format

Share Document