scholarly journals Carbon stock in different ages and plantation systemof cocoa: allometric approach

Author(s):  
Fitria Yuliasmara ◽  
Aris Wibawa ◽  
Adi Prawoto

Indonesia has 1.5 million hectare of cocoa plantation in 2008. which hasstrategic position in carbon dioxide absorption to decrease global warming. Biomass approach method in plants carbon stock estimation specific for cocoa is still not available. The aim of this research is to determine carbon stock in 1—30 years ages of cocoa plants and to measure carbon stock in various cocoa planting systems using specific allometric formula of carbon stock estimation. Regression model on plant biomass estimation was estimated based on height, diameter, and their combination. Carbon stock estimation in different ages and plan tation system of cocoa was conducted by randomized completely block design with 3 replications. The result showed that model Y:áDâ as the best allometric formula, where Y is plant biomass, D is diameter at the breast hight, â is a constant with a value of 0.1208 and á was a constant of 1.98. Increasing of carbon stock in cocoa plantations was proportional to the ages of the plants according to the polinomial equation Y=0.0518X2+2.8976X–4.524. Agroforestry system increased carbon stock in cocoa plantation. Cocoa-Paraserianthes falcataria plantation system produce highest of carbon stock in 7 years. Key words : Carbon stock, allometric, cocoa, ages of plant, planting system.

2018 ◽  
Vol 6 ◽  
pp. 61-67
Author(s):  
Karishma Gubhaju ◽  
Dipesh Raj Pant ◽  
Ramesh Prasad Sapkota

Forests store significant amount of atmospheric carbon in the form of above and below ground biomass and the amount of carbon stored in forests differs along spatial continuum which provides important information regarding forest quality. This study was carried out to estimate the carbon stock of Shree Rabutar Forest of Gaurishankar Conservation Area, Dolakha, Nepal. In total, 20 circular sampling plots with an area 250 m2 were randomly laid in the study area. Ten tree species were observed in the sampling plots laid in the forest. The higher values of density, frequency, abundance and basal area were observed for Rhododendron arboreum, Alnus nepalensis, Pinus roxburghii and Pinus wallichiana. On the basis of Important Value Index, the dominant tree in the forest was Alnus nepalensis followed by Rhododendron arboreum and Pinus roxburghii. Shannon Index of general diversity of trees in the forest was 0.74 with equal value of Evenness Index, whereas the index of dominance was low (0.22) in the forest. Mean biomass of the forest was 464.01±66.71 tonha-1 contributed by above ground tree biomass (384.44 tonha-1), leaf litter, herbs and grasses biomass (2.69±0.196 tonha-1) and below ground tree biomass (76.88±11.13 tonha-1). Mean carbon stock was 262.77±30.79 tonha-1 including soil carbon stock 44.69±2.25 tonha-1. Individuals of trees with 20-30 cm DBH class were observed in maximum number, which shows that the forest has high potential to sequester carbon over time. Carbon stock estimation and forest management can be one of the potential strategies for climate change mitigation especially through carbon dioxide absorption by the forests.


2017 ◽  
Vol 21 (2) ◽  
pp. 91-97
Author(s):  
Irwan Sukri Banuwa ◽  
Tika Mutiasari ◽  
Henrie Buchori ◽  
Muhajir Utomo

This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL) Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD), consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground). The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.


Author(s):  
Elida Novita ◽  
Miftahul Nur Huda ◽  
Hendra Andiananta Pradana

Coffee plantation areas have the potential to absorb carbon dioxide in the atmosphere to reduce the greenhouse gas (GHG) emissions. Especially if coffee plantations are developed with forest plants in agroforestry area within  forest management patterns. On the other hand, some coffee agroforestry now, are planted with horticultural crops that can reduce carbon sequestration ability to reduce climate change impact. The objectives of the study are to identify the parameters of the abiotic environment and the potential for carbon storage in robusta coffee agroforestry at Argopuro mountains, Bondowoso Regency. Through the calculation of plant biomass and carbon stock, it is potential to approach the amount of carbon uptake in plants to reduce carbon emissions in the atmosphere. Coffee plantation is one area that can increase carbon sequestration in the atmosphere. The results showed that microclimate parameters at robusta coffeeagroforestry at Argopuro mountains in Bondowoso regency i.e. temperature, air humidity, light intensity has average values of 29.2 oC; 54%; and 2166 lux respectively, then an average of soil pH is 6.00. There were some commonly plants founds in robusta coffee plantation i.e mango trees, avocado trees, dadap trees, pine trees, and more banana plants. Total biomass estimation in robusta coffee plantation area is 144,834 tonnes/ha. The identification of carbon stock show that the robusta coffee agroforestry area with ??2000 m2 can contribute to reduce atmospheric carbon emissions by 72.417 tonnes/ha in Argopuro mountains, Maesan District, Bondowoso Regency. Keywords: Argopuro Mountains; Bondowoso; Carbon stock; Coffee agroforestry; Climate Change.


2011 ◽  
Vol 18 (1) ◽  
pp. 179-193 ◽  
Author(s):  
Timothy Charles Hill ◽  
Edmund Ryan ◽  
Mathew Williams

2021 ◽  
pp. 97-105

Background: The current challenge is to reduce the uncertainties in obtaining accurate and reliable data of carbon stock changes and emission factors essential for reporting national inventories. Improvements in above ground biomass estimation can also help account for changes in carbon stock in forest areas that may potentially participate in the Reducing emissions from deforestation and forest degradation and other initiatives. Current objectives for such estimates need a unified approach which can be measurable, reportable, and verifiable. This might result to a geographically referenced biomass density database for Sudanese forests that would reduce uncertainties in estimating forest aboveground biomass. The main objective: of this study is to assess potential of some selected forest variables for modeling carbon sequestration for Acacia seyal, vr. Seyal, Acacia seyal, vr. fistula, Acacia Senegal. The specific objectives include development of empirical allometric models for forest biomass estimation, estimation of carbon sequestration for these tree species, estimation of carbon sequestration per hectare and comparing the amount with that reported to the region. A total of 10 sample trees for biomass and carbon determination were selected for each of the three species from El Nour Natural Forest Reserve of the Blue Nile State, Sudan. Data of diameter at breast height, total tree height, tree crown diameter, crown height, and upper stem diameters were measured. Then sample trees were felled and sectioned to their components, and weighed. Subsamples were selected from each component for oven drying at 105 ˚C. Finally allometric models were developed and the aboveground dry weight (dwt) and carbon sequestered per hector were calculated. The results: presents biomass equations, biomass expansion factor and wood density that developed for the trees. In case of inventoried wood volume, corrections for biomass expansion factor and wood density value were done, and new values are suggested for use to convert wood volume to biomass estimates. The results also, indicate that diameter at breast height, crown diameter and tree height are good predictors for estimation of tree dwt and carbon stock. Conclusion: The developed allometric equations in this study gave better estimation of dwt than default value. The average carbon stock was found to be 22.57 t/ha.


2018 ◽  
Vol 6 (1) ◽  
pp. 66 ◽  
Author(s):  
Cahyaning Windarni ◽  
Agus Setiawan ◽  
Rusita Rusita

Increasing CO2 in the atmosphere and decreasing amount of forest as absorb CO2are factors which was the underlying repercussion of climate change. One of solutions for decreasing CO2 concentration through the forest vegetation’s development and emendation. Mangrove forest estimated that effectively absorb carbon through photosynthesis. The purpose of the studyis to estimate the stand and litter carbon stock of mangrove forest. The research used line transectmethod. The first line and plot determined randomly then the next lineand plots was sistematically. The observation plots had measurement with amount of 20m x 20m with spacing between plot in line 20 m with total 20 plots. Each plot was measured diameter just  ≥ 5 cm. Each plot made observations litter sub plots with amount of 0,5 m x 0,5 m. Carbon estimation of stand biomass using allometric equations B = 0,1848D2.3624 and litter biomass using total dry weight. Carbon concentration of organic material typically contains around 46% thus multiplying the biomass by 46%. The average biomass of mangrove forests amounted to 431,78 tons/ha. Carbon estimated of mangrove stand was 197,36 ton/ha and litter carbon was 1,25 ton/ha, based on the research total of carbon mangrove forest was198,61 ton/ha. Keywords:carbon above ground,line transect, mangrove forest


2018 ◽  
Vol 6 (2) ◽  
pp. 51
Author(s):  
Kristian Gomos Banjarnahor ◽  
Agus Setiawan ◽  
Arief Darmawan

Carbon dioxide (CO2) is a greenhouse gas that could increase earth temperature. Through the photosynthesis process, plants absorb CO2 then convert it into carbohydrates, then sequester it in the body of plants. The purpose of the study is to estimate the changes in the carbon stock at the Arboretum University of Lampung. The methods used were stock difference by counting the carbon changes or difference between carbon stored in 2010 and 2016. While the stand biomass estimation measured by trees general allometric equations with non-destructive sampling. The results showed that the total carbon was 46% of the total biomass. Carbon stock in 2016 were about 226.75 ton/ha, showing an increase of 59.72% or 84.78 ton/ha compared to in 2010’s. The increase was due to additional growth of 804 trees as a result of plantation activity and natural regeneration. Keywords: Arboretum, biomass, carbon, necromass, University of Lampung.


2016 ◽  
Vol 44 (2) ◽  
pp. 162
Author(s):  
Sartika Widowati ◽  
Nurul Khumaida ◽  
Sintho Wahyuning Ardie ◽  
Dan Trikoesoemaningtyas

ABSTRACT<br /><br />Indonesia is one of the largest wheat importers. Suitable environmental condition for wheat needs to be studied if wheat is going to be widely cultivated in Indonesia. The adaptability of wheat grown in various climates and altitudes is one of the important aspects. The objective of this experiment was to study the quantitative and morphological character of wheat grown in middle land (540 m asl) in Bogor, West Java. The experiment was arranged in randomized complete block design with three replications. Wheat genotypes used were three national varieties (Nias, Selayar, and Dewata), four new improved varieties (Guri 3 Agritan, Guri 4 Agritan, Guri 5 Agritan, and Guri 6 Unand), and one introduced genotype (SBD). Data were collected for several quantitative variables and seventeen morphological characters based on UPOV descriptor. The result showed that wheat growth was restricted in Bogor. Genotype determined plant height, leaf number, ear length, root length, number of spikelet, harvest time, seed weight, number of tillers, and plant biomass. Based on ear length, grain weight, and plant biomass, Guri 3 Agritan had the highest production than the other genotypes.<br /><br />Keywords: diversity, genetic relationship, high temperature, introduced genotype, phylogenetic<br /><br />


2021 ◽  
Vol 2 (1) ◽  
pp. 30-35
Author(s):  
Anang Susanto ◽  
M Winarni ◽  
Parwi

An effort to meet the national food need is by utilizing productive forest areas under albizia stands. Food stuff such as peanuts can grow under albizia forest stands. The purpose of this research was to know success of agroforestry system implemented to tree after initial release of contract. This study was conducted under albizia stand of state forest Magetan in East Java. Research design was used in this study was randomized block design. 5- year- old albizia stages with 0%, 25%, 50 % trimming intensity with plant spacing of   3 m x 4 m, Albizia trees that used for this comparison as many as 90 albizia trees. Results showed that soil lies under 5-year-old albizia trees still produced peanut with highest weights 129 g/m and lowest weight 117 g/m2 while highest biomass about 115.10 g and lowest biomass about 98.23 g. Application of agroforestry system under 5-year-old albizia stand is still good and intensive, creating work, improving social welfare, local community opinion change into positive perceptions for forestry development, forest protection, forest fire prevention, reducing rapid forest degradation and environmental quality conservation of forest areas.


2021 ◽  
Vol 19 (2) ◽  
pp. 49-58
Author(s):  
Azib Ernawati - ◽  
Luki Abdullah ◽  
Idat Galih Permana

This experiment was conducted to evaluate the mineral contents of I. zollingeriana growing with different planting densities. The experiment was conducted in a randomized block design with three different planting densities (8,000 plants per ha, 13,333 plants per ha, and 20,000 plants per ha) and 3 replication. Plant biomass was analyzed for macro and micro mineral contents as well as Ca:P ratio. The results showed that increased planting densities significantly increased (p<0.05) P, Cu, and Cr contents, but decreased Ca and Na contents  had no significant effect  on Mg, K, Mn, Zn and Fe contents. Furthermore, the increased planting densities significantly decreased (p<0.05) uptakes of Ca, K, Mn, and Fe by the plants, but increased (p<0.05) the uptakes of Cu and Cr. Meanwhile, the uptakes of P, K, Na, and Zn were not affected by planting densities. Based on the results of this study, it can be concluded that the planting density of I. zollingeriana should be maintained in 8,000 plants ha-1 to maintain the content and uptake of mineral in forage crops. Key words:        defoliation periods,          Indigofera zollingeriana, macrominerals, micro minerals, planting density


Sign in / Sign up

Export Citation Format

Share Document