A new method of PWV retrieval over land with remote sensing data: a case of AMSR2

Author(s):  
Nan Jiang ◽  
Yan Xu ◽  
Tianhe Xu

<p>Precipitable water vapor (PWV) is an important parameter reflecting the amount of solid water in the atmosphere, which is widely utilized in the studies of numerical weather prediction (NWP) and climate change. The microwave radiance measurements made by the space-based remote sensing satellites give us the opportunity to make the climate studies on a global scale. So far, PWV retrieval over the ocean has a long data record and the technology is very mature, but in the case of PWV retrieval over land, it is more challenging to isolate the atmospheric signals from the varied surface signals. In this study, we will apply a new retrieval method over land based on the dual-polarized difference (vertical and horizontal) at 19 GHz and 23 GHz using the brightness temperatures from the Global Change Observation Mission-Water (GCOM-W)/Advanced Microwave Scanning Radiometer 2 (AMSR2). We found polarization difference in brightness temperatures has an exponential relation on the amount of PWV. The validation results of the PWV retrieval from the ground-based GNSS stations show that the proposed method has a mean accuracy of 3.9 mm. Thus, the proposed method can give a possibility to improve the accuracy of data assimilation in the NWP applications and is useful for the studies of global climate change with the long-term data records.</p>

2021 ◽  
Vol 13 (19) ◽  
pp. 3845
Author(s):  
Guangbo Ren ◽  
Jianbu Wang ◽  
Yunfei Lu ◽  
Peiqiang Wu ◽  
Xiaoqing Lu ◽  
...  

Climate change has profoundly affected global ecological security. The most vulnerable region on Earth is the high-latitude Arctic. Identifying the changes in vegetation coverage and glaciers in high-latitude Arctic coastal regions is important for understanding the process and impact of global climate change. Ny-Ålesund, the northern-most human settlement, is typical of these coastal regions and was used as a study site. Vegetation and glacier changes over the past 35 years were studied using time series remote sensing data from Landsat 5/7/8 acquired in 1985, 1989, 2000, 2011, 2015 and 2019. Site survey data in 2019, a digital elevation model from 2009 and meteorological data observed from 1985 to 2019 were also used. The vegetation in the Ny-Ålesund coastal zone showed a trend of declining and then increasing, with a breaking point in 2000. However, the area of vegetation with coverage greater than 30% increased over the whole study period, and the wetland moss area also increased, which may be caused by the accelerated melting of glaciers. Human activities were responsible for the decline in vegetation cover around Ny-Ålesund owing to the construction of the town and airport. Even in areas with vegetation coverage of only 13%, there were at least five species of high-latitude plants. The melting rate of five major glaciers in the study area accelerated, and approximately 82% of the reduction in glacier area occurred after 2000. The elevation of the lowest boundary of the five glaciers increased by 50–70 m. The increase in precipitation and the average annual temperature after 2000 explains the changes in both vegetation coverage and glaciers in the study period.


2016 ◽  
Vol 9 (7) ◽  
pp. 2845-2875 ◽  
Author(s):  
Matthias Schneider ◽  
Andreas Wiegele ◽  
Sabine Barthlott ◽  
Yenny González ◽  
Emanuel Christner ◽  
...  

Abstract. In the lower/middle troposphere, {H2O,δD} pairs are good proxies for moisture pathways; however, their observation, in particular when using remote sensing techniques, is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating the remote sensing with in situ measurement techniques. The aim is to retrieve calibrated tropospheric {H2O,δD} pairs from the middle infrared spectra measured from ground by FTIR (Fourier transform infrared) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper, we present the final MUSICA products, and discuss the characteristics and potential of the NDACC/FTIR and MetOp/IASI {H2O,δD} data pairs. First, we briefly resume the particularities of an {H2O,δD} pair retrieval. Second, we show that the remote sensing data of the final product version are absolutely calibrated with respect to H2O and δD in situ profile references measured in the subtropics, between 0 and 7 km. Third, we reveal that the {H2O,δD} pair distributions obtained from the different remote sensors are consistent and allow distinct lower/middle tropospheric moisture pathways to be identified in agreement with multi-year in situ references. Fourth, we document the possibilities of the NDACC/FTIR instruments for climatological studies (due to long-term monitoring) and of the MetOp/IASI sensors for observing diurnal signals on a quasi-global scale and with high horizontal resolution. Fifth, we discuss the risk of misinterpreting {H2O,δD} pair distributions due to incomplete processing of the remote sensing products.


2021 ◽  
Vol 13 (20) ◽  
pp. 4043
Author(s):  
Adilai Wufu ◽  
Shengtian Yang ◽  
Yun Chen ◽  
Hezhen Lou ◽  
Chaojun Li ◽  
...  

The Pamir Plateau is an extremely important water resource area for over 60 million people in Central Asia. With the increasingly significant response of water resources to climate change, timely hydrological predictions for the future supply are necessary. In the plateau, accessing and monitoring the glaciers and their melt outflow are challenging due to the harsh geographic environments. Unmanned aerial vehicles (UAVs) combined with remote sensing technologies offer great potential for providing information to improve water resources management and decision-making. In this study, we integrated UAV and satellite remote sensing data, and applied a water balance model to estimate monthly and annual river discharges for the ten river sections in the Eastern Pamir Plateau, China from 1999 to 2020. We found that the glacier area in the controlled basins of these sections has decreased by approximately 63% from 1999 to 2020. Basins with smaller glacier areas are more sensitive to climate change. The ten river sections are characterized by decreasing trends in monthly river discharge, with an average reduction of −21.05%. The annual variation of total runoff and glacial meltwater discharge is consistent with the monthly variation of discharge, and the average discharge from glacier meltwater accounts for 83% of the total runoff. We conclude that the overall decreasing trend of discharge is closely related to the recession of glaciers. Under the background of climate warming in the region, glaciers are no longer sufficient to support the increase in river discharge, which has passed its peak value and shows a decreasing trend.


2011 ◽  
Vol 10 ◽  
pp. 16-21
Author(s):  
Rabindra Man Tamrakar

Greenhouse effect causes global warming and its main consequence is the climate change. Average global temperature is rising significantly over the period. Despite the contribution of total GHG emission by Nepal to the global community is insignificant compared to the developed countries, Nepal has already encountered several adverse effects due to the global climate change, leading to the melting of Himalayan glaciers, reduced agriculture production, loss of biodiversity and ecosystems and changes in social structure and livelihoods. Forest land use change is responsible for CO2 emissions. Forest management therefore can play a significant role in climatic change mitigation. REDD has become the key mechanism in mitigating climate change. The success of REDD mechanism however depends primarily on availability of reliable forestry data including biomass changes and forest carbon estimates. Various Remote Sensing data including optical sensor data have been used for the analysis of forest cover change and estimation of degree of deforestation and degradation. LiDAR however has been widely used in estimating forest biomass for the climate change mitigation.


2014 ◽  
Vol 7 (4) ◽  
pp. 3915-3952 ◽  
Author(s):  
A. Wiegele ◽  
M. Schneider ◽  
F. Hase ◽  
S. Barthlott ◽  
O. E. García ◽  
...  

Abstract. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.


2019 ◽  
Author(s):  
Imeshi Weerasinghe ◽  
Ann van Griensven ◽  
Wim Bastiaanssen ◽  
Marloes Mul ◽  
Li Jia

Abstract. Evapotranspiration (ET) is one of the most important components in the water cycle. However, there are relatively few direct measurements of ET (using flux towers), whereas various disciplines ranging from hydrology to agricultural and climate sciences, require information on the spatial and temporal distribution of ET at regional and global scale. Due to limited data availability, attention has turned toward satellite based products to fill observational gaps. Various remote sensing data products have been developed, providing a large range of ET estimations. Across Africa only a limited number of flux towers are available which are insufficient for systematic evaluation of remotely sensed (RS) derived ET products. Thus we propose a methodology for evaluating RS derived ET data at the basin scale using a general water balance (WB) approach, where ET is equal to precipitation minus discharge for long-term annual averages. Firstly, RS ET products are compared with WB inferred ET for basins without long-term trends present. The RS products are then assessed according to spatial characteristics through analysing two land cover elements across Africa, irrigated areas and water bodies. A cluster analysis is also conducted to identify similarities between individual ET products. Finally, the RS products are evaluated against the Budyko equation. The results show that CMRSET, SSEBop and WaPOR rank highest in terms of estimation of long-term annual average mean ET across basins with low biases. Along with ETMonitor, the same three products rank highest in spatial distribution of ET patterns across Africa. GLEAM and MOD16 consistently rank the lowest in most criteria evaluation. Many of the products analysed in this study can be trusted depending on the study under question, keeping in mind some of these products have large biases in magnitude estimation. However our recommendation would be the three highest ranked products being CMRSET, SSEBop and WaPOR.


2016 ◽  
Author(s):  
M. Schneider ◽  
A. Wiegele ◽  
S. Barthlott ◽  
Y. González ◽  
E. Christner ◽  
...  

Abstract. Abstract. In the lower/middle troposphere H2O-δD pairs are good proxies for moisture pathways, however their observation is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating remote sensing with in-situ measurement techniques. The aim is to retrieve accurate tropospheric H2O-δD pairs from the middle infrared spectra measured from ground by the FTIR (Fourier Transform InfraRed) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper we review the MUSICA framework, present the final MUSICA products, and outline the NDACC/FTIR’s and METOP/IASI’s potential for observing accurate and consistent H2O-δD data pairs. First, we briefly resume the particularities of an H2O-δD pair retrieval. Second, we show that the remote sensing data of the final product version are absolutely calibrated with respect to H2O and δD in-situ profile references measured in the subtropics, between 0 and 7 km. Third, we empirically demonstrate that the calibrated remote sensing H2O-δD pairs can identify different lower/middle tropospheric moisture pathways and advert to the risk of misinterpretations caused by an incorrect processing of such remote sensing data. Fourth, we reveal that the different sensors (NDACC/FTIR instruments, MetOp/IASI-A, and MetOp/IASI-B) provide consistent H2O-δD pairs for very distinct atmospheric clear sky conditions. Fifth, we document the unique possibilities of the NDACC/FTIR instruments for providing long-term records (important for climatological studies) and of the MetOp/IASI sensors for observing diurnal signals on quasi global scale and with high horizontal resolution.


2019 ◽  
pp. 79-95
Author(s):  
N.E. Terentiev

Based on the latest data, paper investigates the dynamics of global climate change and its impact on economic growth in the long-term. The notion of climate risk is considered. The main directions of climate risk management policies are analyzed aimed, first, at reducing anthropogenic greenhouse gas emissions through technological innovation and structural economic shifts; secondly, at adaptation of population, territories and economic complexes to the irreparable effects of climate change. The problem of taking into account the phenomenon of climate change in the state economic policy is put in the context of the most urgent tasks of intensification of long-term socio-economic development and parrying strategic challenges to the development of Russia.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Heikki S. Lehtonen ◽  
Jyrki Aakkula ◽  
Stefan Fronzek ◽  
Janne Helin ◽  
Mikael Hildén ◽  
...  

AbstractShared socioeconomic pathways (SSPs), developed at global scale, comprise narrative descriptions and quantifications of future world developments that are intended for climate change scenario analysis. However, their extension to national and regional scales can be challenging. Here, we present SSP narratives co-developed with stakeholders for the agriculture and food sector in Finland. These are derived from intensive discussions at a workshop attended by approximately 39 participants offering a range of sectoral perspectives. Using general background descriptions of the SSPs for Europe, facilitated discussions were held in parallel for each of four SSPs reflecting very different contexts for the development of the sector up to 2050 and beyond. Discussions focused on five themes from the perspectives of consumers, producers and policy-makers, included a joint final session and allowed for post-workshop feedback. Results reflect careful sector-based, national-level interpretations of the global SSPs from which we have constructed consensus narratives. Our results also show important critical remarks and minority viewpoints. Interesting features of the Finnish narratives compared to the global SSP narratives include greater emphasis on environmental quality; significant land abandonment in SSPs with reduced livestock production and increased plant-based diets; continued need for some farm subsidies across all SSPs and opportunities for diversifying domestic production under scenarios of restricted trade. Our results can contribute to the development of more detailed national long-term scenarios for food and agriculture that are both relevant for local stakeholders and researchers as well as being consistent with global scenarios being applied internationally.


Sign in / Sign up

Export Citation Format

Share Document