Morphometric Analysis of a Drainage Basin: A Study of Ghatganga River, Bajhang District, Nepal

2020 ◽  
Vol 7 ◽  
pp. 127-144
Author(s):  
Sandeep Adhikari

This study attempts to study the morphometric characteristics of the Ghatganga basin by using Geographical information system (GIS). This analysis has shown that the relation of stream order (U) and stream number (Nu) which gives a negative linear pattern that order increases with a decreasing number of stream segment of a particular order. Different morphometric parameters such as stream length (Lu), bifurcation ratio (Rb), drainage density (D), stream frequency (Fs), texture ratio (T), elongation ratio (Re), circularity ratio (Rc), form factor ratio (Rf), relief ratio (Rh) and river profile have revealed the basin has a dendritic pattern of drainage, indicating high relief and steep ground slope with less elongated young and mature landforms in which geological structures don’t have a dominant influence on the basin.

Author(s):  
M. Dhanusree ◽  
G. Bhaskaran

Aims: The paper aims to study about the river basin morphometry namely the physical, linear and aerial parameters for the basin. Study Design: The Study has been carried out with the help of Geospatial techniques and statistical formulas. Place and Duration of Study: Bharathapuzha river basin, Kerala, India between January 2018 to July 2018. Methodology: The Study of River morphometry of Bharathapuzha River basin has been done with the help of SRTM satellite data. The downloaded data has been analyzed with the help of ARC GIS Software. The morphometric analysis has been carried out by dividing the basin into nine watersheds based on Water shed Atlas of India Prepared by Soil and Land Use board of           India. Relief, Linear and areal parameters of the basin is calculated with the help of statistical formulas. Results: Based on the analysis it is noted that there is not much difference in morphometric values except in some watersheds. Watershed number 5A2B5, 5A2B6 and 5A2B7 has highest drainage density, stream frequency, relief, relief ratio, ruggedness number, stream length ratio and lowest bifurcation ratio. These watersheds are characterized by highest surface runoff and erosion. The values of form factor, circulatory ratio and elongation ratio suggests that most of the watersheds are elongated and has high basin relief. The maximum stream order frequency is observed in case of first order streams and then for second order streams. Hence it is noted that there is decrease in stream frequency as stream order increases. Conclusion: The mean bifurcation ratio of the Bharathapuza basin is 1.52 which indicates the whole basin is less effected by structural control. This present study is valuable for the erosion control, watershed management, land and water resource planning and future prospective related to runoff study.


Agropedology ◽  
2019 ◽  
Vol 29 (1) ◽  
Author(s):  
A. P. Bowlekar ◽  

In present study Kansa watershed in Satara district of Maharashtra was characterized for watershed parameters. Geographical Information Systems (GIS) and a high-resolution Digital Elevation Model (DEM) has been utilized for the estimation of morphological parameters. Several morphometric parameters have been computed and analyzed viz. linear aspects such as stream order, stream number, stream length, mean stream length, stream length ratio; areal aspects such as drainage density, stream frequency, drainage texture, elongation ratio, circularity ratio, form factor, constant of channel maintenance; relief aspects such as relief, relief ratio, relative relief, ruggedness number, length of overland flow. Impacts of morphometric parameters on flash flood characteristics have also been investigated. The presence of the maximum number of the first order segments shows that the basin is subjected to erosion and also that some areas of the basin are characterized by variations in lithology and topography. The form factor is 0.21, and the circulatory ratio is 0.42, which suggests an elongated type of catchment. Elongation ratio is 0.52, which indicates that watershed has high relief and steep slope. The estimated catchment characteristics may be useful to stimulate hydrological responses of the catchment.


2006 ◽  
Vol 37 (2) ◽  
pp. 129-142 ◽  
Author(s):  
H. Apaydin ◽  
F. Ozturk ◽  
H. Merdun ◽  
N.M. Aziz

Detailed geomorphologic characteristics need to be compiled for performing hydrologic modeling of a basin. Basin form and hydrologic characteristics are to be related so the basin form must also be represented by quantitative descriptors. The typical morphologic characteristics used in hydrological analyses are basin area, perimeter, mainstream length, total stream length, contour length, basin shape (form factor, circularity ratio, compactness ratio, basin elongation), slope, drainage density, relief (maximum relief, relief ratio, relative relief), effective basin width, and median elevation. The objective of this study is to propose an algorithm to automatically calculate basin characteristics using vector GIS. The results produced by the algorithm were compared to the manual method and the two methods were found statistically similar.


Author(s):  
Rajnish Yadav ◽  
Mohammad Iqbal Bhat ◽  
Faisul-Ur- Rasool ◽  
Shabir Ahmed Bangroo ◽  
Roheela Ahmad ◽  
...  

Morphometric analysis is of vital importance in any hydrological research and is inevitable in development and management of watershed. Using the watershed as the main unit of morphometric characterization is the most logical choice, as well as geomorphological and hydrological processes take place within the drainage basin. A critical assessment and evaluation of morphometric parameters of Khag micro-watershed was accomplished through measurement of relief, linear and aerial aspects using Geographical Information System (GIS). The watershed boundaries, aspect, slope, digital elevation model (DEM), profile graph of topography, drainage order and drainage density mapswere generated for detailed study of micro-watershed using Shuttle Radar Topographic Mission (SRTM) data. The study area was designated as fourth order basin with the drainage area of 34.32 km2 and shows dendritic drainage pattern. The total length, drainage density and mean bifurcation ratio (Rb) were found to be 38.84 km, 1.13km/km2 and 1.73, respectively. The Khag micro-watershed showed the greater Rb value, which directs a strong structural control in the runoff pattern. A decrease in the stream frequency of flow was also observed with an increase in the order of flow. The shape parameters such as circulatory ratio, elongation ratio, length of over land flow, form factor and drainage texture of Khag micro-watershed were 0.42, 0.56, 0.43 km, 0.24 and 1.66, respectively. The Khag micro-watershed is elongated in shape and dendritic in drainage pattern. This can be attributed to the fact that the lithology and structural controls are more or less uniform. Relative relief and ruggedness number were 0.065 and 2.39 and are likely to subject the micro watershed to maximum soil erosion that demands, instantaneous soil conservation measure to be taken by watershed managers for its stability and sustainability. These studies area advantageous for the planning of rainwater harvesting and the management of the catchment area.


2021 ◽  
Vol 67 (3) ◽  
pp. 248-262
Author(s):  
Neetesh Kumar ◽  
◽  
Jagadish Singh ◽  

The morphometric analysis of any drainage basin is considered useful for water resource studies such as flood assessment, water quality sampling, water use reporting, watershed management etc. Drainage basin is generally defined as the areal extent of land from which the surface runoff flows to a defined drain, channel, stream or river. It is mainly governed by the topography of the terrain. Geographical Information System and Image Processing Techniques can be used for the identification of morphological features and analyzing properties of the basin. The morphometric parameters include linear, areal and relief aspects. ‘Watershed Atlas of India’ (2014) on 1:50,000 scale is an important digital database for planning and monitoring of development programs on a watershed basis. It serves as a uniform baseline for developing a hydrological unit-based data bank to be used for the management of water resources in the country. Run-off, sedimentation, water balance, evapotranspiration and several other catchment characterization related studies may be taken up on a watershed basis. The present study deals with morphometric parameters such as stream order (Nu), stream length (Lu), bifurcation ratio (Rb), drainage density (D) and stream frequency (Fs) of the Betwa drainage basin. Geographically the basin (77° 30′ to 80° 12′ east longitudes and 23°30′ to 25°55′ north latitudes) is located in two states i.e. Madhya Pradesh and Uttar Pradesh occupying an area of 43780 km2. The length of the stream segment is maximum for the first-order stream and decreases as the stream order increases. This study would help in understanding the hydrological behaviour of the basin. This, in turn, may enable the local people to utilize the resources of the basin for the sustainable development of the area.


Author(s):  
Kannan R ◽  
Venkateswaran S

GIS and Remote sensing have proved to be a resourceful tool in the explanation of drainage pattern for water resources management and its planning. The identification of morphometric characteristics based on a Geographic Information System (GIS) was carried out in the Nagavathi watershed, Dharmapuri District. The quantitative drainage morphometric parameters was carried out for the Nagavathi watershed by estimating their (a) Linear aspects like Stream number, Stream order, Stream length, Mean stream length, Stream length ratio, Bifurcation ratio, (b) Aerial aspects like Drainage density, Stream frequency, Texture Ratio, Elongation ratio, Form factor, Circularity index, Length of overflow, Constant of Channel maintenance, Drainage texture, Compactness coefficient and (c) Relief aspects like Basin relief, Relief ratio, Ruggedness number, Gradient ratio, Melton ruggedness ratio, Slope,  relative relief, Shape Factor and Leminscate.  The drainage area of Nagavithi watershed is 482 sq. Km. the main drainage patterns is dendritic to sub-dendritic drainage. The Nagavathi watershed was classified as a fifth order drainage watershed, whereas micro watershed was classified as an eight in the watershed. Stream order of the watershed was predominantly controlled by structural and lithological controls of various drainage patterns and their stream orientations were identified to evaluate the direction and controlling factors in drainage network. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 0.8 to 43.1. The elongation ratio of  Microwatersheds  varies  from  0.13  to  0.43, indicates  Microwatersheds  fall  under elongated  pattern. This study would help the local people to utilize the resources for planning rainwater harvesting and watershed management.


2016 ◽  
Vol 8 (4) ◽  
pp. 9 ◽  
Author(s):  
Akinwumiju A. S. ◽  
Olorunfemi M. O.

This study evaluated some morphometric parameters with a view to assessing the infiltration potential of Osun Drainage Basin (ODB), Southwestern Nigeria. Input data were derived from SPOT DEM using ArcGIS 10.3 platform. ODB has an area extent of 2,208.18 km2, and is drained by 1,560 streams with total length of 2,487.7 km. The Relief Ratio (5.6) suggests that ODB is characterized by topographic high and topographic low. Thus, infiltration potential would be low as surface runoff would have less time to infiltrate before entering the drainage channels. The computed values of Drainage Texture (0.52), Stream Number (1,560), Total Stream Length (2,487.7 m) and Main Stream Length (119 m) indicate that larger percentage of annual rainwater would leave ODB as river discharge. Stream Frequency, Basin Perimeter, Length of Overland Flow and Drainage Density influence Infiltration Number across the basin. Infiltration Number increases with increasing Stream Frequency (r = 0.95) and Drainage Density (r = 0.78); and Length of Overland Flow increases with decreasing Drainage Density (r = -0.83), Stream Frequency (r = -0.51) and Infiltration Number (r = -0.45). The study concluded that basin’s infiltration potential is moderate as suggested by the mean Infiltration Number.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
K. Srinivasa Raju ◽  
D. Nagesh Kumar ◽  
Anmol Jalali

Abstract Fuzzy VIKOR, a decision making technique, is applied to prioritize 224 sub-catchments of Mahanadi Basin, India. Seven geomorphology based criteria viz., drainage density, bifurcation ratio, stream frequency, texture ratio, form factor, elongation ratio and circulatory ratio are estimated from five digital elevation models (DEMs). Triangular membership functions were formulated for each criterion for each sub-catchment which are based on individual values obtained from individual DEM's. Entropy method is employed for estimation of weights of criteria and a similar mechanism is followed while formulating triangular membership function for weights. Eight groups are formulated with a number of sub-catchments in each group as 5, 26, 69, 65, 29, 11, 12, 7 for taking up conservation measures. Effect of varying strategy weight, (ν) on the ranking pattern is also studied and found that ν value effects ranking pattern significantly.


Characteristics of the river basin formed by natural factors and non-natural factors that makes up an ecosystem. One of the characters that create the river basin of the physical element is morphometry. Morphometry has three parameters such as linear, relief, and areal. The linear aspect consist of stream order (U), stream length (Lu), bifurcation ratio (Rb ), stream length ratio (Rl ), bifurcation ratio (Rb ). Relief aspect consists of basin relief (Bh), relief ratio (Rh), ruggedness number (Rn). Areal elements comprise drainage density (Dd ), stream frequency (Fs ), texture ratio (T), form factor (Rf ), circularity ratio (Rc ), elongation ratio (Re ), length of overland flow (Lg ), constant channel maintenance (C). This study aims to analyze the characteristics of watershed morphometry and implement Geographical Information System (GIS) and Artificial Neural Network (ANN) to get watershed priority predictions. After analyze, the prioritization based on morphometry that is six sub-watershed with very high priority, two sub-watershed with high priority, four sub-watershed with medium priority and five sub-watershed have low priorities. From the test results by measuring method using a neural network based, it is known that neural network algorithms yield accuracy values 90.00%, and class precision 90.82 %. The model produced satisfactory results and showed a very good agreement between the predicted and observed data.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Swati Ghosh ◽  
Ashis Kr. Paul

Abstract Scientists and researchers in ancient and modern times have profoundly applied morphometric analysis to evaluate quantitative description of landforms or drainage basins and large regions. The objective of this study is to enlighten certain features like tectonic control over drainage basin, the hydro-geomorphic characteristics of the drainage system and the geomorphic maturity of terrain of South Andaman Island. After extensive studies, drainage system in this particular island is broadly classified into five major drainage patterns (dendritic, trellis, parallel, radial and centripetal). An attempt has been made here to investigate the in-depth morphometric characteristics of dendritic pattern of a fourth-order watershed. In earlier attempts, researchers have used morphometric analysis to calculate stream ordering, stream length, length ratio and bifurcation ratio as part of linear aspects and drainage density, stream frequency, form factor, circulatory ratio, elongated ratio as part of areal aspects. The present case study has been carried out in remote sensing and geographical information system (GIS) environment. Shuttle Radar Topographic Mission data has been used to prepare the digital elevation model and GIS to evaluate all linear, areal and relief aspects of this small drainage basin in South Andaman Island which was never unearthed till date.


Sign in / Sign up

Export Citation Format

Share Document