Determination of the drainage basin characteristics using vector GIS

2006 ◽  
Vol 37 (2) ◽  
pp. 129-142 ◽  
Author(s):  
H. Apaydin ◽  
F. Ozturk ◽  
H. Merdun ◽  
N.M. Aziz

Detailed geomorphologic characteristics need to be compiled for performing hydrologic modeling of a basin. Basin form and hydrologic characteristics are to be related so the basin form must also be represented by quantitative descriptors. The typical morphologic characteristics used in hydrological analyses are basin area, perimeter, mainstream length, total stream length, contour length, basin shape (form factor, circularity ratio, compactness ratio, basin elongation), slope, drainage density, relief (maximum relief, relief ratio, relative relief), effective basin width, and median elevation. The objective of this study is to propose an algorithm to automatically calculate basin characteristics using vector GIS. The results produced by the algorithm were compared to the manual method and the two methods were found statistically similar.

2020 ◽  
Vol 7 ◽  
pp. 127-144
Author(s):  
Sandeep Adhikari

This study attempts to study the morphometric characteristics of the Ghatganga basin by using Geographical information system (GIS). This analysis has shown that the relation of stream order (U) and stream number (Nu) which gives a negative linear pattern that order increases with a decreasing number of stream segment of a particular order. Different morphometric parameters such as stream length (Lu), bifurcation ratio (Rb), drainage density (D), stream frequency (Fs), texture ratio (T), elongation ratio (Re), circularity ratio (Rc), form factor ratio (Rf), relief ratio (Rh) and river profile have revealed the basin has a dendritic pattern of drainage, indicating high relief and steep ground slope with less elongated young and mature landforms in which geological structures don’t have a dominant influence on the basin.


Agropedology ◽  
2019 ◽  
Vol 29 (1) ◽  
Author(s):  
A. P. Bowlekar ◽  

In present study Kansa watershed in Satara district of Maharashtra was characterized for watershed parameters. Geographical Information Systems (GIS) and a high-resolution Digital Elevation Model (DEM) has been utilized for the estimation of morphological parameters. Several morphometric parameters have been computed and analyzed viz. linear aspects such as stream order, stream number, stream length, mean stream length, stream length ratio; areal aspects such as drainage density, stream frequency, drainage texture, elongation ratio, circularity ratio, form factor, constant of channel maintenance; relief aspects such as relief, relief ratio, relative relief, ruggedness number, length of overland flow. Impacts of morphometric parameters on flash flood characteristics have also been investigated. The presence of the maximum number of the first order segments shows that the basin is subjected to erosion and also that some areas of the basin are characterized by variations in lithology and topography. The form factor is 0.21, and the circulatory ratio is 0.42, which suggests an elongated type of catchment. Elongation ratio is 0.52, which indicates that watershed has high relief and steep slope. The estimated catchment characteristics may be useful to stimulate hydrological responses of the catchment.


2017 ◽  
Vol 19 (1) ◽  
pp. 155-172 ◽  
Author(s):  
KHANCHOUL Kamel ◽  
SAAIDIA Bachir

In the present paper an attempt is made to study the morphometric characteristics of five watersheds which are part of Seybouse and Coastal basin of Constantine located in northeast of Algeria. The study focuses on evaluating the effect of morphometric parameters on land degradation. The Geographical Information Systems which represent efficient tools in determination of drainage basin morphometric properties and principal component analysis are applied to ten geomorphic parameters on twenty subwatersheds, to group the parameters under different components based on significant correlations. Some morphometric parameters are computed and analyzed such as basin area, drainage density, stream frequency, form factor, orographic coefficient, hypsometric integral, and lithology index, basin slope, average overland flow distance, basin relief ratio. Outcomes of the matrix of correlation and principal component analysis of ten geomorphic parameters clearly depict that fifty percent of the variables are strongly correlated with the components like basin area, drainage density, stream frequency, orographic coefficient and relief ratio. It has been found that Guis sub-basin, three sub-basins of the Saf Saf watershed and all the sub-basins of the Mellah watershed are subjected to high land degradation, thus, creating an urgent need for applying soil and water conservation measures.


2021 ◽  
Vol 67 (3) ◽  
pp. 248-262
Author(s):  
Neetesh Kumar ◽  
◽  
Jagadish Singh ◽  

The morphometric analysis of any drainage basin is considered useful for water resource studies such as flood assessment, water quality sampling, water use reporting, watershed management etc. Drainage basin is generally defined as the areal extent of land from which the surface runoff flows to a defined drain, channel, stream or river. It is mainly governed by the topography of the terrain. Geographical Information System and Image Processing Techniques can be used for the identification of morphological features and analyzing properties of the basin. The morphometric parameters include linear, areal and relief aspects. ‘Watershed Atlas of India’ (2014) on 1:50,000 scale is an important digital database for planning and monitoring of development programs on a watershed basis. It serves as a uniform baseline for developing a hydrological unit-based data bank to be used for the management of water resources in the country. Run-off, sedimentation, water balance, evapotranspiration and several other catchment characterization related studies may be taken up on a watershed basis. The present study deals with morphometric parameters such as stream order (Nu), stream length (Lu), bifurcation ratio (Rb), drainage density (D) and stream frequency (Fs) of the Betwa drainage basin. Geographically the basin (77° 30′ to 80° 12′ east longitudes and 23°30′ to 25°55′ north latitudes) is located in two states i.e. Madhya Pradesh and Uttar Pradesh occupying an area of 43780 km2. The length of the stream segment is maximum for the first-order stream and decreases as the stream order increases. This study would help in understanding the hydrological behaviour of the basin. This, in turn, may enable the local people to utilize the resources of the basin for the sustainable development of the area.


PROMINE ◽  
2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Ignatius Adi Prabowo

The aims of this research is to determine the shape of Serang drainage basin, Kulon Progo, DIY baseon the appearance recorded on the image of SRTM. Research method of remote sensing imageinterpretation of SRTM for the determination of Serang drainage basin and then calculate themorphometry of drainage basin in terms of the length of the main river, the width of the drainage basin,and the around of the drainage basin by using ArcGIS software. The results of morphometriccalculations is the main river length of 27.25 km, the drainage basin area 305.404 km2, the around ofdrainage basin 107.353 km. Based on these results can be calculated wide drainage basin of 11.207km, the shape of roundness 0.33 so that the Serang drainage basin is classified as a drainage basinwith elongated shape.


2016 ◽  
Vol 8 (4) ◽  
pp. 9 ◽  
Author(s):  
Akinwumiju A. S. ◽  
Olorunfemi M. O.

This study evaluated some morphometric parameters with a view to assessing the infiltration potential of Osun Drainage Basin (ODB), Southwestern Nigeria. Input data were derived from SPOT DEM using ArcGIS 10.3 platform. ODB has an area extent of 2,208.18 km2, and is drained by 1,560 streams with total length of 2,487.7 km. The Relief Ratio (5.6) suggests that ODB is characterized by topographic high and topographic low. Thus, infiltration potential would be low as surface runoff would have less time to infiltrate before entering the drainage channels. The computed values of Drainage Texture (0.52), Stream Number (1,560), Total Stream Length (2,487.7 m) and Main Stream Length (119 m) indicate that larger percentage of annual rainwater would leave ODB as river discharge. Stream Frequency, Basin Perimeter, Length of Overland Flow and Drainage Density influence Infiltration Number across the basin. Infiltration Number increases with increasing Stream Frequency (r = 0.95) and Drainage Density (r = 0.78); and Length of Overland Flow increases with decreasing Drainage Density (r = -0.83), Stream Frequency (r = -0.51) and Infiltration Number (r = -0.45). The study concluded that basin’s infiltration potential is moderate as suggested by the mean Infiltration Number.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Swati Ghosh ◽  
Ashis Kr. Paul

Abstract Scientists and researchers in ancient and modern times have profoundly applied morphometric analysis to evaluate quantitative description of landforms or drainage basins and large regions. The objective of this study is to enlighten certain features like tectonic control over drainage basin, the hydro-geomorphic characteristics of the drainage system and the geomorphic maturity of terrain of South Andaman Island. After extensive studies, drainage system in this particular island is broadly classified into five major drainage patterns (dendritic, trellis, parallel, radial and centripetal). An attempt has been made here to investigate the in-depth morphometric characteristics of dendritic pattern of a fourth-order watershed. In earlier attempts, researchers have used morphometric analysis to calculate stream ordering, stream length, length ratio and bifurcation ratio as part of linear aspects and drainage density, stream frequency, form factor, circulatory ratio, elongated ratio as part of areal aspects. The present case study has been carried out in remote sensing and geographical information system (GIS) environment. Shuttle Radar Topographic Mission data has been used to prepare the digital elevation model and GIS to evaluate all linear, areal and relief aspects of this small drainage basin in South Andaman Island which was never unearthed till date.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
A. P. Bowlekar ◽  

In present study Kansa watershed in Satara district of Maharashtra was characterized for watershed parameters. Geographical Information Systems (GIS) and a high-resolution Digital Elevation Model (DEM) has been utilized for the estimation of morphological parameters. Several morphometric parameters have been computed and analyzed viz. linear aspects such as stream order, stream number, stream length, mean stream length, stream length ratio; areal aspects such as drainage density, stream frequency, drainage texture, elongation ratio, circularity ratio, form factor, constant of channel maintenance; relief aspects such as relief, relief ratio, relative relief, ruggedness number, length of overland flow. Impacts of morphometric parameters on flash flood characteristics have also been investigated. The presence of the maximum number of the first order segments shows that the basin is subjected to erosion and also that some areas of the basin are characterized by variations in lithology and topography. The form factor is 0.21, and the circulatory ratio is 0.42, which suggests an elongated type of catchment. Elongation ratio is 0.52, which indicates that watershed has high relief and steep slope. The estimated catchment characteristics may be useful to stimulate hydrological responses of the catchment.


Sign in / Sign up

Export Citation Format

Share Document