scholarly journals Vertically migrating phytoplankton drive seasonal formation of subsurface negative preformed nitrate anomalies in the subtropical North Pacific and North Atlantic

Author(s):  
Robert T. Letscher ◽  
Tracy A. Villareal

Abstract. Summertime drawdown of dissolved inorganic carbon in the absence of measurable nutrients from the mixed layer and subsurface negative preformed nitrate (preNO3) anomalies observed for the ocean's subtropical gyres are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute including biological nitrogen fixation, lateral nutrient transport, carbon overconsumption or non-Redfield C : N : P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. Here we investigate the seasonal formation rates and potential contributing mechanisms for negative preformed nitrate anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA in the North Pacific and BATS in the North Atlantic. Non-Redfield −O2 : N stoichiometry for dissolved organic matter (DOM) remineralization is found to account for up to ~ 15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ~ 32–46 mmol N m−2 yr−1 at station ALOHA and ~ 46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. Cycling of transparent exopolymer particles (TEP) and heterotrophic nitrate uptake can contribute to the formation of these preNO3 anomalies, however a significant fraction, estimated at ~ 50–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary nutrient acquisition strategy and biogeochemical signature to quantitatively explain both the residual negative and positive preNO3 anomalies as well as the mixed layer dissolved inorganic carbon drawdown at stations ALOHA and BATS. TEP production by the model Rhizosolenia mat system could provide accelerated vertical transport of TEP as well as link the three processes together. Phytoplankton vertical migrators, although rare and easily overlooked, may play a large role in subtropical ocean nutrient cycling and the biological pump.

2018 ◽  
Vol 15 (21) ◽  
pp. 6461-6480 ◽  
Author(s):  
Robert T. Letscher ◽  
Tracy A. Villareal

Abstract. Summertime mixed-layer drawdown of dissolved inorganic carbon in the absence of measurable nutrients in the ocean's subtropical gyres and non-Redfieldian oxygen : nitrate relationships in the underlying subsurface waters are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute to one or both, including lateral nutrient transport, carbon overconsumption or non-Redfield C:N:P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. To obtain insight into the likely magnitude of potential contributing mechanisms that can remove nitrate from the nutricline while supporting dissolved inorganic carbon (DIC) drawdown tens of meters higher in the water column, we investigated the seasonal formation rates for negative preformed nitrate (preNO3) anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA (A Long-Term Oligotrophic Habitat Assessment) in the North Pacific and BATS (Bermuda Atlantic Time-series Study) in the North Atlantic. Non-Redfield -O2:N stoichiometry for dissolved organic matter (DOM) remineralization accounts for up to ∼15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. We present a new formulation for calculating preNO3 (residual preNO3) that includes components resulting from non-Redfield DOM cycling. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ∼32–46 mmol N m−2 yr−1 at Station ALOHA and ∼46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with residual positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. We evaluate three mechanisms to explain these anomalies, calculating that transparent exopolymer particle (TEP) cycling and heterotrophic nitrate uptake can contribute to the formation of both residual preNO3 anomalies. However, a significant fraction, estimated at ∼50 %–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary distribution, nutrient acquisition strategy, and biogeochemical signature to simultaneously remove nitrate at depth and transport it above the nutricline. Reported transport rates by known migrators equal or exceed the residual preNO3 anomaly formation rates and potentially explain both the negative and positive residual preNO3 anomalies as well as the mixed-layer DIC drawdown at the stations ALOHA and BATS within the limits of scarce detailed abundance profiles. However, the three processes examined are not independent and mutually exclusive. The model Rhizosolenia mat system (and perhaps other migrators) produces TEPs, suggesting that migration could provide accelerated vertical transport of TEPs and provide labile carbon for heterotrophic nitrate uptake. These results based on geochemical distributions suggest that, in the absence of additional mechanisms and rates, phytoplankton vertical migrators, although rare and easily overlooked, play a larger role in subtropical ocean nutrient cycling and the biological pump than generally recognized.


2016 ◽  
Vol 13 (4) ◽  
pp. 1163-1177 ◽  
Author(s):  
Kristen M. Krumhardt ◽  
Nicole S. Lovenduski ◽  
Natalie M. Freeman ◽  
Nicholas R. Bates

Abstract. As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore (haptophyte) pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998–2014) of surface chlorophyll and particulate inorganic carbon (PIC) as a proxy for coccolithophore abundance to show that coccolithophore populations in the North Atlantic subtropical gyre have been increasing significantly over the past 2 decades. Over 1990–2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore pigment abundance at BATS, though we note that this is sensitive to the period being analyzed. We further demonstrate that variability in coccolithophore chlorophyll a here is positively correlated with variability in nitrate and DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by  ∼ 1.4 µmol kg−1 yr−1 over the period of 1991–2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.


Author(s):  
Sayaka Yasunaka ◽  
Humio Mitsudera ◽  
Frank Whitney ◽  
Shin-ichiro Nakaoka

AbstractA compilation of surface water nutrient (phosphate, nitrate, and silicate) and partial pressure of CO2 (pCO2) observations from 1961 to 2016 reveals seasonal and interannual variability in the North Pacific. Nutrients and calculated dissolved inorganic carbon (DIC) reach maximum concentrations in March and minimum in August. Nutrient and DIC variability is in-phase (anti-phase) with changes in the mixed layer depth (sea surface temperature) north of 30 °N, and it is anti-phase (in-phase) with changes in Chl-a north of 40 °N (in 30 °N–40 °N). Seasonal drawdown of nutrients and DIC is larger toward the northwest and shows a local maximum in the boundary region between the subarctic and subtropics. Stoichiometric ratios of seasonal drawdown show that, compared to nitrate, silicate drawdown is large in the northwestern subarctic including the Bering and Okhotsk seas, and drawdown of carbon is larger toward the south. Net community production in mixed layer from March to July is estimated to be more than 6 gC/m2/mo in the boundary region between the subarctic and subtropics, the western subarctic, the Gulf of Alaska, and the Bering Sea. Nutrient and DIC concentrations vary with the Pacific Decadal Oscillation and the North Pacific Gyre Oscillation which cause changes in horizontal advection and vertical mixing. The DIC trend is positive in all analysis area and large in the western subtropics (> 1.0 μmol/l/yr). Averaged over the analysis area, it is increasing by 0.77 ± 0.03 μmol/l/yr (0.75 ± 0.02 μmol/kg/yr).


2015 ◽  
Vol 12 (22) ◽  
pp. 18625-18660
Author(s):  
K. M. Krumhardt ◽  
N. S. Lovenduski ◽  
N. M. Freeman ◽  
N. R. Bates

Abstract. As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998–2014) of surface chlorophyll and particulate inorganic carbon (PIC) to show that coccolithophore populations in the North Atlantic Subtropical Gyre have been increasing significantly over the past two decades. Over 1991–2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore abundance at BATS. We further demonstrate that variability in coccolithophore abundance here is positively correlated with variability in DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by ∼ 1.4 μmol kg−1 yr−1 over 1991 to 2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.


2013 ◽  
Vol 10 (5) ◽  
pp. 8283-8311 ◽  
Author(s):  
M. Wakita ◽  
S. Watanabe ◽  
M. Honda ◽  
A. Nagano ◽  
K. Kimoto ◽  
...  

Abstract. Rising atmospheric CO2 contents have led to greater CO2 uptake by the oceans, lowering both pH due to increasing hydrogen ions and CaCO3 saturation states due to declining carbonate ion (CO32−). Here, we used previously compiled data sets and new data collected in 2010 and 2011 to investigate ocean acidification of the North Pacific western subarctic gyre. In winter, the western subarctic gyre is a source of CO2 to the atmosphere because of convective mixing of deep waters rich in dissolved inorganic carbon (DIC). We calculated pH in winter mixed layer from DIC and total alkalinity (TA), and found that it decreased at the rate of −0.001 ± 0.0004 yr−1 from 1997 to 2011. This decrease rate is slower than that expected under condition of seawater/atmosphere equilibration, and it is also slower than the rate in the subtropical regions (−0.002 yr−1). The slow rate is caused by a reduction of CO2 emission in winter due to an increase in TA. Below the mixed layer, the calcite saturation horizon (~185 m depth) shoaled at the rate of 2.9 ± 0.9 m yr−1 as the result of the declining CO32− concentration (−0.03 ± 0.01 μmol k−1yr−1). Between 200 m and 300 m depth, pH decline during the study period (−0.0051 ± 0.0010 yr−1) was larger than ever reported in the open North Pacific. This enhanced acidification rate below the calcite saturation horizon reflected not only the uptake of anthropogenic CO2 but also the increase in the decomposition of organic matter evaluated from the increase in AOU, which suggests that the dissolution of CaCO3 particles increased.


2013 ◽  
Vol 10 (8) ◽  
pp. 14515-14537
Author(s):  
V. Racapé ◽  
N. Metzl ◽  
C. Pierre ◽  
G. Reverdin ◽  
P. D. Quay ◽  
...  

Abstract. This study introduces for the first time the δ13CDIC seasonality in the North Atlantic Subpolar Gyre (NASPG) using δ13CDIC data obtained between 2005 and 2012 with Dissolved Inorganic Carbon (DIC) and nutrient observations. On the seasonal scale, the NASPG is characterized by higher δ13CDIC values during summer than during winter with seasonal amplitude of 0.77‰. This is attributed to biological activity in summer and to deep remineralization process during winter convection. During all seasons, we observed a strong linear relationship between δ13CDIC and DIC. Results also revealed a negative anomaly for DIC and nutrients in August 2010 that could be explained by a coccolithophore bloom associated to a warming up to +2 °C. Winter data also showed a large decrease in δ13CDIC associated with an increase in DIC between 2006 and 2011–2012 but with observed time rates (−0.04‰ yr−1and +1.7 μmol kg−1 yr−1) much larger than the expected anthropogenic signal.


Sign in / Sign up

Export Citation Format

Share Document