scholarly journals DYNAMIC PROPERTIES OF FLUID SATURATED ELASTIC SOIL LAYERS

1976 ◽  
Vol 245 (0) ◽  
pp. 25-36
Author(s):  
NAOTSUNE TAGA ◽  
YUTAKA TOGASHI
2019 ◽  
Vol 131 ◽  
pp. 01060
Author(s):  
Zhijie Li ◽  
Jing Song ◽  
Zhou Zhao ◽  
Shouying Yang ◽  
Jiansen Huang ◽  
...  

Through the use of the particle flow software simulation, the influences on the microscopic dynamic properties of high viscosity soft soil caused by the inner diameter, cut angle and wall thickness of the samplers were studied with the example of the dredged mud. The motion behavior of the inflection point of particle characteristics was compared in seven soil samples by dividing the soil layers. The results show that a convective displacement field of the soil particles is formed at the bottom, and the particles above the convection are mainly subject to tensile expansion while the particles below the convection are mainly compressed and contracted, which result in the regular changes in porosity and bending deformation of the soil layers. There is a synergistic relationship between the intersection of the porosity curve and the initial porosity curve and the convective position of the particle displacement field. There is a characteristic inflection point in the interlayer particle displacement with the soil layers behave as a bending deformation. The particle disturbance between the inflection points is not obvious and the particle disturbance outside the inflection points is larger. The deformation feature can be fitted to a rotating paraboloid with the lower opening and the disturbance of the seven groups soil samples can be assessed initially by the a value of the surface equation. The line connecting the inflection points of the interlayer features can be refitted to a paraboloid of rotation. The ratio of the volume of the paraboloid to the volume of the soil sample can be used to evaluate the originality of the soil sample.


2011 ◽  
Vol 105-107 ◽  
pp. 216-219
Author(s):  
Pei Hsun Tsai ◽  
Kang Nan Chen

In the paper the shear wave velocity and Poisson’s ratio profile are studied using the MASW test. Slant stacking was adopted in experimental dispersion curve constructing. Theoretical dispersion curve can be constructed by thin layer stiffness matrix method. A real-parameter genetic algorithm is required to minimize the error between the theoretical and experimental dispersion curves. Test results show that spectrum using slant stacking shows the fundamental mode of Rayleigh wave in the frequency range from 15 Hz to 50Hz. To reduce the error of experimental and theoretical dispersion curve using real-parameter genetic algorithm is feasible. The results also show that the strata of Lu-Liao-His Earth Dam can be modeled as 3 soil layers with an underlying half space.


Author(s):  
R.F. Stump ◽  
J.R. Pfeiffer ◽  
JC. Seagrave ◽  
D. Huskisson ◽  
J.M. Oliver

In RBL-2H3 rat basophilic leukemia cells, antigen binding to cell surface IgE-receptor complexes stimulates the release of inflammatory mediators and initiates a series of membrane and cytoskeletal events including a transformation of the cell surface from a microvillous to a lamellar topography. It is likely that dynamic properties of the IgE receptor contribute to the activation of these responses. Fewtrell and Metzger have established that limited crosslinking of IgE-receptor complexes is essential to trigger secretion. In addition, Baird and colleagues have reported that antigen binding causes a rapid immobilization of IgE-receptor complexes, and we have demonstrated an apparent increase with time in the affinity of IgE-receptor complexes for antigen.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


Sign in / Sign up

Export Citation Format

Share Document