scholarly journals STUDY ON CEMENT EFFECTIVENESS FACTOR OF FLY ASH OF CONCRETE USING FLY ASH CEMENT (TYPE-B)

2021 ◽  
Vol 27 (66) ◽  
pp. 586-591
Author(s):  
Kenji FUNAMOTO ◽  
Kyou TO
2017 ◽  
Vol 71 (1) ◽  
pp. 308-314
Author(s):  
Shingo YOSHIMOTO ◽  
Tatsuo SHINMI ◽  
Hiroyoshi KATO ◽  
Takatoshi MOTOORI

2013 ◽  
Vol 634-638 ◽  
pp. 2742-2745 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This study undertook the research of size effect on compressive strength and modulus of elasticity, respectively. The parameters of this study are curing age and fly ash replacement ratio to investigate size effect of Type A (100mm x 200mm) and Type B (150mm x 300mm) specimens in high performance concrete. On this study, high performance concrete was fabricated with different FA contents of 10%, 20% and 30%. The measurements were performed on days 28 and 91.


2016 ◽  
Vol 711 ◽  
pp. 1037-1044 ◽  
Author(s):  
Vivek Bindiganavile ◽  
Chi Qian Ou ◽  
Zheng Chen ◽  
Yaman Boluk

This paper describes approaches to evaluating the resistance of cement-based composites to sulphate attack. The conventional approach of evaluation by means of measuring expansion is discussed in comparison with the sulphate diffusion, which was quantified as a function of depth. Besides CSA Types GU and HS, a 30:70 blend of fly ash and cement Type GU was also examined. The specimens so produced were immersed in a sulphate solution as per ASTM C1012 and retrieved variously after 7, 14, 28, 56 and 84 days of exposure. As expected, Type HS cement performed best with minimum expansion and sulphate ingress. On the other hand, the Type GU cement showed lower expansion and sulphate ingress in comparison to the fly ash blended binder. Although bearing identical porosity, the blended binder had the smallest median pore size. Therefore, the sulphate ingress and consequent ettringite production likely cracks the blended system more than the other two. Significantly, after longer durations of sulphate exposure, the blended system showed higher tensile strength which implies a healing of cracks through ettringite formation.


2011 ◽  
Vol 291-294 ◽  
pp. 1870-1874 ◽  
Author(s):  
Guo Xia Wei ◽  
Han Qiao Liu ◽  
Shu Guang Zhang

Solidification tests of MSWI fly ash (FA) with three types of cement including ordinary Portland cements (OPC), calcium sulfoaluminate cement(CSA) and calcium aluminate cement (CAC) were carried out to discuss the effect of cement type on of the FA-cement solid matrix by means of setting time, compressive strength and heavy metals leachability. Results show that the setting time of the FA-cement mixtures using CSA and CAC is shorter than that of OPC. According to compressive strengths demand and the standard of landfill site of municipal solid waste, the dosage of OPC should be limited about 35% by weigh, the dosage of CAC should be limited about 25% by weigh, and the dosage of CSA should be limited more than 40% by weigh.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Abdul Ghofur ◽  
Rudi Siswanto

Meningkatnya jumlah kendaraan bermotor setiap tahun berdampak terhadap peningkatan gas buang, salah satu teknologi yang dapat digunakan untuk mereduksi emisi gas buang kendaraan yaitu dengan penambahan filter gas buang pada saluran gas buang kendaraan. Filter gas buang merupakan sebuah filter (penyaring) yang menggunakan keramik berpori, dimana media tersebut diharapkan dapat membantu atau mempercepat terjadinya proses penyaringan sehingga gas seperti CO dan HC dapat tersaring.Penelitian ini menggunakan tiga komposisi dari campuran fly ash dan kaolin. Dari hasil penelitian diketahui bahwa filter gas buang berbahan fly ash batubara dan kaolin memiliki kemampuan dalam mengurangi emisi gas buang HC dan CO serta dalam mengurangi tingkat kebisingan. Dibandingkan dengan knalpot tanpa filter gas buang, persentase tertinggi filter gas buang komposisi A dalam mengurangi emisi HC sebesar 87,89 % pada rpm idle, sedangkan untuk CO sebesar 78,21 % pada rpm idle. Persentase tertinggi filter gas buang komposisi B dalam mengurangi emisi HC sebesar 85,29 % pada rpm idle , sedangkan untuk CO sebesar 72,13 % pada rpm idle. Persentase tertinggi filter gas buang komposisi C dalam mengurangi emisi HC sebesar 76,11 % pada rpm idle , sedangkan untuk CO sebesar 66,57 % pada rpm idle.Kata Kunci: emisi gas buang, filter gas buang, fly ash, kaolin.With the increased motor cycle, every year have been affecting the populated from combustion gas, one of the technology that can reduce the amount of combustion gas is to install filters on the exhaust nozzle. Exhaust filters is a porous permeable ceramics filterer, where it should aid or hasten the filtering process like carbon monoxide (CO) and hydro carbon (HC). In this experiment using three types of combined fly ash and kaolin. From the result known that combined fly ash and kaolin can reduce emission gas of CO and HC as well as the noise level. In result known that exhaust filters is superior in overall performance and reducing HC emission than any standard exhaust nozzle. Comparing between nozzle without filterer, with type A composition the highest percentage of HC decreased emission by 87.89% in idle rpm, while the highest percentage of CO decreased emission by 78.21% in idle rpm. On type B composition, the highest percentage of HC decreased emission by 85.29% in idle rpm, while the highest percentage of CO decreased emission by 72.13% in idle rpm. Last with type C composition the highest percentage of HC decreased emission by 76.11% in idle rpm, while the highest percentage of CO decreased emission by 66.57% in idle rpm. Key word : cly, exhaust filters, exhaust gas emission, fly ash.


Sign in / Sign up

Export Citation Format

Share Document