scholarly journals STUDY ON THE RIGID ZONE OF FOOTING BEAMS FOR HORIZONTAL FORCE

2002 ◽  
Vol 8 (16) ◽  
pp. 67-72
Author(s):  
Kuniyasu SUZUKI ◽  
Kazuo OHTSUKI
Keyword(s):  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 977-983
Author(s):  
Koichi Oka ◽  
Kentaro Yamamoto ◽  
Akinori Harada

This paper proposes a new type of noncontact magnetic suspension system using two permanent magnets driven by rotary actuators. The paper aims to explain the proposed concept, configuration of the suspension system, and basic analyses for feasibility by FEM analyses. Two bar-shaped permanent magnets are installed as they are driven by rotary actuators independently. Attractive forces of two magnets act on the iron ball which is located under the magnets. Control of the angles of two magnets can suspend the iron ball stably without mechanical contact and changes the position of the ball. FEM analyses have been carried out for the arrangement of two permanent magnets and forces are simulated for noncontact suspension. Hence, successfully the required enough force against the gravity of the iron ball can be generated and controlled. Control of the horizontal force is also confirmed by the rotation of the permanent magnets.


1991 ◽  
Vol 19 (3) ◽  
pp. 142-162 ◽  
Author(s):  
D. S. Stutts ◽  
W. Soedel ◽  
S. K. Jha

Abstract When measuring bearing forces of the tire-wheel assembly during drum tests, it was found that beyond certain speeds, the horizontal force variations or so-called fore-aft forces were larger than the force variations in the vertical direction. The explanation of this phenomenon is still somewhat an open question. One of the hypothetical models argues in favor of torsional oscillations caused by a changing rolling radius. But it appears that there is a simpler answer. In this paper, a mathematical model of a tire consisting of a rigid tread ring connected to a freely rotating wheel or hub through an elastic foundation which has radial and torsional stiffness was developed. This model shows that an unbalanced mass on the tread ring will cause an oscillatory rolling motion of the tread ring on the drum which is superimposed on the nominal rolling. This will indeed result in larger fore-aft than vertical force variations beyond certain speeds, which are a function of run-out. The rolling motion is in a certain sense a torsional oscillation, but postulation of a changing rolling radius is not necessary for its creation. The model also shows the limitation on balancing the tire-wheel assembly at the wheel rim if the unbalance occurs at the tread band.


Author(s):  
Yalda Nozad Mojaver ◽  
Paul Tawadros ◽  
Polyana Moura Ferreira ◽  
Terry Whittle ◽  
Greg M. Murray

1892 ◽  
Vol 51 (308-314) ◽  
pp. 152-182

The operations of The Kew Observatory, in the Old Deer Park, Richmond, Surrey, are controlled by the Kew Committee, which is constituted as follows: The magnetographs have worked satisfactorily all through since last report. The curves obtained, representing Declination, Horizontal Force, and Vertical Force, have shown a marked increased activity in terrestrial magnetic changes as compared with the preceding year, although no very large disturbances have been registered.


2003 ◽  
Vol 94 (5) ◽  
pp. 1766-1772 ◽  
Author(s):  
Jinger S. Gottschall ◽  
Rodger Kram

We reasoned that with an optimal aiding horizontal force, the reduction in metabolic rate would reflect the cost of generating propulsive forces during normal walking. Furthermore, the reductions in ankle extensor electromyographic (EMG) activity would indicate the propulsive muscle actions. We applied horizontal forces at the waist, ranging from 15% body weight aiding to 15% body weight impeding, while subjects walked at 1.25 m/s. With an aiding horizontal force of 10% body weight, 1) the net metabolic cost of walking decreased to a minimum of 53% of normal walking, 2) the mean EMG of the medial gastrocnemius (MG) during the propulsive phase decreased to 59% of the normal walking magnitude, and yet 3) the mean EMG of the soleus (Sol) did not decrease significantly. Our data indicate that generating horizontal propulsive forces constitutes nearly half of the metabolic cost of normal walking. Additionally, it appears that the MG plays an important role in forward propulsion, whereas the Sol does not.


2015 ◽  
Vol 10 (2) ◽  
pp. 103-112
Author(s):  
Sinan Korjenic ◽  
Bernhard Nowak ◽  
Philipp Löffler ◽  
Anna Vašková

Abstract This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Juan Antonio Escobar-Álvarez ◽  
Juan Pedro Fuentes-García ◽  
Filipe Almeida Viana-da-Conceição ◽  
Pedro Jiménez-Reyes

2015 ◽  
Vol 744-746 ◽  
pp. 1184-1187
Author(s):  
Qiu Zhai ◽  
Wen Xiang ◽  
Yu Li

Flexible berthing pile-high pile wharf is a system which is composed of flexible berthing pile, rubber fender and pile platform. The system was divided into two forms based on the pile platform sustained the impact load or not. The method to analysis the lateral deformation of the pile was relatively mature when the platform was subjected to the impact load. Instead, when the pile platform is subjected to the impact load, the analytical method is unsatisfactory because of the complexity about the lateral deformation of the system. This paper takes the second condition as the research object, and study the lateral deformation of the pile, rubber fender and the pile platform. The mathematical formula is built on the horizontal force balancing condition and displacement coordination at the top of pile, the method to evaluate the correlation coefficients of the formulas is suggested, and the steps that solve the formulas by iterative method are described. The theory is clear, and the result can offer a reference for structure design and code revision.


Sign in / Sign up

Export Citation Format

Share Document