Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000

Data Series ◽  
2010 ◽  
Author(s):  
Michael Wieczorek ◽  
Andrew E. LaMotte
Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 592
Author(s):  
Mehdi Aalijahan ◽  
Azra Khosravichenar

The spatial distribution of precipitation is one of the most important climatic variables used in geographic and environmental studies. However, when there is a lack of full coverage of meteorological stations, precipitation estimations are necessary to interpolate precipitation for larger areas. The purpose of this research was to find the best interpolation method for precipitation mapping in the partly densely populated Khorasan Razavi province of northeastern Iran. To achieve this, we compared five methods by applying average precipitation data from 97 rain gauge stations in that province for a period of 20 years (1994–2014): Inverse Distance Weighting, Radial Basis Functions (Completely Regularized Spline, Spline with Tension, Multiquadric, Inverse Multiquadric, Thin Plate Spline), Kriging (Simple, Ordinary, Universal), Co-Kriging (Simple, Ordinary, Universal) with an auxiliary elevation parameter, and non-linear Regression. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R2) were used to determine the best-performing method of precipitation interpolation. Our study shows that Ordinary Co-Kriging with an auxiliary elevation parameter was the best method for determining the distribution of annual precipitation for this region, showing the highest coefficient of determination of 0.46% between estimated and observed values. Therefore, the application of this method of precipitation mapping would form a mandatory base for regional planning and policy making in the arid to semi-arid Khorasan Razavi province during the future.


2021 ◽  
Vol 7 (5) ◽  
pp. 1113-1122
Author(s):  
Bo Chen ◽  
Shi-jun Xu ◽  
Xin-ping Zhang ◽  
Yi Xie

Using the methods of literature review, regression analysis and moving average, this paper selects the daily precipitation of Changsha and Chengde from 1951 to 1986 as samples, and analyzes the average precipitation, precipitation frequency, precipitation intensity, extreme precipitation time and other indicators of Changsha and Chengde from the perspective of interannual and seasonal changes Trends. The researches show that: the average precipitation of Changsha in the 36 years is 1151.2mm, spring is the wet season, autumn and winter are the dry seasons, and the maximum average precipitation is in spring; the average annual precipitation, precipitation frequency in spring, summer and winter, annual precipitation frequency, annual precipitation intensity and extreme precipitation events show a decreasing trend. The average annual precipitation of Chengde city is 454.1 mm, wet season in summer and dry season in spring, autumn and winter; the average annual precipitation, precipitation in four seasons, annual precipitation frequency, precipitation frequency in spring, autumn and winter, annual precipitation intensity and extreme precipitation events show a decreasing trend, while the precipitation frequency in summer shows an increasing trend. The study of regional climate change based on the time series data of this stage is of great significance to comprehensively understand the law of regional climate change and predict the future trend of climate change.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 716 ◽  
Author(s):  
Meifang Ren ◽  
Zongxue Xu ◽  
Bo Pang ◽  
Jiangtao Liu ◽  
Longgang Du

To comprehensively evaluate the changes in precipitation patterns in the context of global climate change and urbanization, the spatiotemporal variability of precipitation during the wet seasons of 1981–2017 in Beijing was analyzed in this study using up-to-date daily and hourly precipitation data from observation stations. It was concluded that the average annual precipitation in wet seasons showed a downward trend, while the simple daily intensity index (SDII) showed an upward trend. Precipitation in the central urban area of Beijing showed obvious changes from 1981 to 2017; the average annual precipitation in the central urban area was almost as great as that in Miyun country after 2010, which was the storm center for the past three decades. The average annual maximum 3-h and 6-h precipitation in the 2010s was higher than the past three decades, especially in urban and suburban areas. In addition, the atmospheric circulation index, urbanization impact, and topography were all found to be important factors that affect the pattern of precipitation in Beijing.


2016 ◽  
Vol 38 ◽  
pp. 376
Author(s):  
Guilherme Goergen ◽  
Jônatan Dupont Tatsch ◽  
Felipe Raphael Theodorovitz Mendoza ◽  
Roilan Hernández Valdés ◽  
Carolina Kannemberg ◽  
...  

In this article we carried out a hydroclimatological characterization of the upper reaches of the Rio Negro Basin, located in the Brazilian portion. We used rainfall and streamflow data from the Instituto Nacional de Meteorologia (INMET) and the Agência Nacional de Águas (ANA) in the 1995-2014 period, collected at different points surrounding the watershed. From the data analysis, we can identify that the average annual precipitation over the basin varies between 1440 and 1480mm. The annual average streamflow was approximately 538,7mm, corresponding to a runoff coefficient of 38%. The accumulated rainfall and streamflow series showed that, as of mid-year 2004, there was a significant reduction of the accumulated streamflow, probably caused by an increase in water demand for agricultural irrigation due to lower volumes of rainfall. Pre-2005 runoff coefficient showed an interannual oscillation between 36% and 42%, after 2005 the runoff coefficient systematically decreased from 45% to 35%. This reduction suggests an increase in the extraction of water for irrigation which consequently favors greater crop evapotranspiration in a period with slightly lower annual precipitation (2005-2014) compared to the previous period (1995-2004).


2012 ◽  
Vol 16 (11) ◽  
pp. 1-15 ◽  
Author(s):  
Charles W. Lafon ◽  
Steven M. Quiring

Abstract Fire affects virtually all terrestrial ecosystems but occurs more commonly in some than in others. This paper investigates how climate, specifically the moisture regime, influences the flammability of different landscapes in the eastern United States. A previous study of spatial differences in fire regimes across the central Appalachian Mountains suggested that intra-annual precipitation variability influences fire occurrence more strongly than does total annual precipitation. The results presented here support that conclusion. The relationship of fire occurrence to moisture regime is also considered for the entire eastern United States. To do so, mean annual wildfire density and mean annual area burned were calculated for 34 national forests and parks representing the major vegetation and climatic conditions throughout the eastern forests. The relationship between fire activity and two climate variables was analyzed: mean annual moisture balance [precipitation P − potential evapotranspiration (PET)] and daily precipitation variability (coefficient of variability for daily precipitation). Fire activity is related to both climate variables but displays a stronger relationship with precipitation variability. The southeastern United States is particularly noteworthy for its high wildfire activity, which is associated with a warm, humid climate and a variable precipitation regime, which promote heavy fuel production and rapid drying of fuels.


Sign in / Sign up

Export Citation Format

Share Document